Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class ConvNormRelu(nn.Module): | |
def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False, | |
kernel_size=None, stride=None, padding=None, norm='BN', leaky=False): | |
super().__init__() | |
if kernel_size is None: | |
if downsample: | |
kernel_size, stride, padding = 4, 2, 1 | |
else: | |
kernel_size, stride, padding = 3, 1, 1 | |
if conv_type == '2d': | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
bias=False, | |
) | |
if norm == 'BN': | |
self.norm = nn.BatchNorm2d(out_channels) | |
elif norm == 'IN': | |
self.norm = nn.InstanceNorm2d(out_channels) | |
else: | |
raise NotImplementedError | |
elif conv_type == '1d': | |
self.conv = nn.Conv1d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
bias=False, | |
) | |
if norm == 'BN': | |
self.norm = nn.BatchNorm1d(out_channels) | |
elif norm == 'IN': | |
self.norm = nn.InstanceNorm1d(out_channels) | |
else: | |
raise NotImplementedError | |
nn.init.kaiming_normal_(self.conv.weight) | |
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True) | |
def forward(self, x): | |
x = self.conv(x) | |
if isinstance(self.norm, nn.InstanceNorm1d): | |
x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1)) # normalize on [C] | |
else: | |
x = self.norm(x) | |
x = self.act(x) | |
return x | |
class PoseSequenceDiscriminator(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU | |
self.seq = nn.Sequential( | |
ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky), # B, 256, 64 | |
ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky), # B, 512, 32 | |
ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky), # B, 1024, 16 | |
nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True) # B, 1, 16 | |
) | |
def forward(self, x): | |
x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2) | |
x = self.seq(x) | |
x = x.squeeze(1) | |
return x |