File size: 5,948 Bytes
d57a3a3 946a8f8 c7eaac6 c0ad3c2 8fb35c3 d57a3a3 11ca173 d57a3a3 11ca173 d57a3a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
import gradio as gr
from math import sqrt
from datasets import load_dataset
df = load_dataset("csv", data_files = "vishal323/heart.csv")
df
df.info()
cp_data= df['cp'].value_counts().reset_index()
cp_data['index'][3]= 'asymptomatic'
cp_data['index'][2]= 'non-anginal'
cp_data['index'][1]= 'Atyppical Anigma'
cp_data['index'][0]= 'Typical Anigma'
cp_data
ecg_data= df['restecg'].value_counts().reset_index()
ecg_data['index'][0]= 'normal'
ecg_data['index'][1]= 'having ST-T wave abnormality'
ecg_data['index'][2]= 'showing probable or definite left ventricular hypertrophy by Estes'
ecg_data
def outbreak(feature):
fig = plt.figure()
plt.rcParams.update({'font.size': 10})
plt.rc('xtick', labelsize=5)
if (feature == "Age"):
plt.title("Age of Patients")
plt.xlabel("Age")
sns.countplot(x='age',data=df);
return fig
elif (feature == "Sex"):
plt.title("Sex of Patients,0=Female and 1=Male")
sns.countplot(x='sex',data=df);
return fig
elif (feature == "Chest Pain"):
plt.title("Chest Pain of Patients")
sns.barplot(x=cp_data['index'],y= cp_data['cp']);
return fig
elif (feature == "ECG"):
plt.title("ECG data of Patients")
sns.barplot(x=ecg_data['index'],y= ecg_data['restecg']);
return fig
elif (feature == "Blood Pressure"):
plt.title("Resting Blood Pressure (mmHg)")
sns.distplot(df['trestbps'], kde=True, color = 'magenta')
plt.xlabel("Resting Blood Pressure (mmHg)")
return fig
def op(target, sex, cp, age, bp, ch):
fig = plt.figure()
plt.rcParams.update({'font.size': 10})
plt.rc('xtick', labelsize=5)
print(target, sex, cp, age, bp, ch)
data = df[((df['target'] == 1) & df['sex'] == sex) & (df['cp'] == cp) & (df['age'] >= age) & (df['trestbps'] >= bp) & (df['chol'] >= ch) ]
if (data.empty):
return fig
if (target == "Age"):
plt.title("Count of age of diseased people")
plt.xlabel("Age")
sns.countplot(x='age',data=data);
return fig
elif (target == "Sex"):
plt.title("Count of sex of diseased people")
plt.xlabel("Sex")
sns.countplot(x='sex',data=data);
return fig
if (target == "Chest Pain"):
plt.title("Count of diseased people with cheast pain")
plt.xlabel("Chest Pain")
sns.countplot(x='cp',data=data);
return fig
if (target == "ECG"):
plt.title("Count of people with low glucose")
plt.xlabel("ECG")
sns.countplot(x='restecg',data=data);
return fig
if (target == "Blood Pressure"):
plt.title("Count of diseased people with high BP")
plt.xlabel("BP")
sns.countplot(x='trestbps',data=data);
return fig
def prd(model, age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal):
if model == "Random Forest":
filename = 'DACVV/randomforest.pkl'
X_test = np.array([[age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal],[52, 1, 0, 125, 212, 0, 1, 168, 0, 1.0, 2, 2, 3]])
loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.predict(X_test)[0]
else:
filename = 'DACVV/scaling.pkl'
X_test = np.array([[age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal],[52, 1, 0, 125, 212, 0, 1, 168, 0, 1.0, 2, 2, 3]])
loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.predict(X_test)[0]
return "π, You may a Heart Disease" if (result == 1) else "π, You are Healthy!!!"
inputs = gr.Dropdown(["Age", "Sex", "Chest Pain", "ECG", "Blood Pressure"], label="Input Feature")
outputs = gr.Plot()
visualisation = gr.Interface(
fn=outbreak,
inputs=inputs,
outputs=outputs,
)
vis = gr.Interface(
inputs = [
gr.Radio(["Age", "Sex", "Chest Pain", "ECG", "Blood Pressure"], label = "Target Feature"),
gr.Radio([1, 0], label = "Sex"),
gr.Radio([0,1,2,3], label = "Chest Pain"),
gr.Slider(25, 80, value=50, step = 1, label = "Age"),
gr.Slider(94, 200, value=150, step = 1, label = "Blood Pressure"),
gr.Slider(126, 564, value=130, step = 1, label = "Cholestrol")
],
fn=op,
outputs = gr.Plot(),
examples=[
["Age", 1, 2, 50, 100, 222],
["Sex", 0, 1, 30, 150, 322],
["Chest Pain", 1, 0, 40, 120, 422],
["ECG", 1, 3, 70, 98, 522],
["Blood Pressure", 0, 1, 28, 170, 262],
]
)
pred = gr.Interface(
inputs = [gr.Radio(["Random Forest", "Scaler"], label = "Model"),
"number",
gr.Radio([0, 1], label = "Sex"),
gr.Radio([0,1,2,3], label = "Chest Pain"),
gr.Slider(94, 200, value=150, step = 1, label = "Blood Pressure"),
gr.Slider(126, 564, value=130, step = 1, label = "Cholestrol"),
gr.Radio([0, 1], label = "FBS"),
gr.Radio([0, 1, 2], label = "RestECG"),
gr.Slider(71, 202, value=50, step = 1, label = "Thalach"),
gr.Radio([0, 1], label = "exang"),
gr.Slider(0, 6.2, value=3, label = "OldPeak"),
gr.Radio([0, 1, 2], label = "Slope"),
gr.Slider(0, 4, value=3, step = 1, label = "CA"),
gr.Slider(0, 3, value=50, step = 1, label = "Thal"),
],
fn=prd,
outputs = "text",
examples=[
["Random Forest", 52, 1, 0, 125, 212, 0, 1, 168, 0, 1.0, 2, 2, 3],
["Scaler", 62, 0, 0, 138, 294, 1, 1, 106, 0, 1.9, 1, 3, 2],
["Random Forest", 44, 0, 2, 108, 141, 0, 1, 175, 0, 0.6, 1, 0, 2],
["Scaler", 68, 0, 2, 120, 211, 0, 0, 115, 0, 1.5, 1, 0, 2]
]
)
interface = gr.TabbedInterface([visualisation, vis, pred], ["Visualisation", "Real Time Analysis", "Predictions"])
interface.launch(inline = False)
|