File size: 5,948 Bytes
d57a3a3
 
 
 
 
 
 
 
946a8f8
 
c7eaac6
c0ad3c2
8fb35c3
d57a3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11ca173
d57a3a3
 
 
 
 
11ca173
d57a3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
import gradio as gr
from math import sqrt
from datasets import load_dataset


df = load_dataset("csv", data_files = "vishal323/heart.csv")


df

df.info()

cp_data= df['cp'].value_counts().reset_index()
cp_data['index'][3]= 'asymptomatic'
cp_data['index'][2]= 'non-anginal'
cp_data['index'][1]= 'Atyppical Anigma'
cp_data['index'][0]= 'Typical Anigma'
cp_data

ecg_data= df['restecg'].value_counts().reset_index()
ecg_data['index'][0]= 'normal'
ecg_data['index'][1]= 'having ST-T wave abnormality'
ecg_data['index'][2]= 'showing probable or definite left ventricular hypertrophy by Estes'

ecg_data

def outbreak(feature):

  fig = plt.figure()
  plt.rcParams.update({'font.size': 10})
  plt.rc('xtick', labelsize=5)

  if (feature == "Age"):

    
    plt.title("Age of Patients")
    plt.xlabel("Age")


    sns.countplot(x='age',data=df);
    return fig

  elif (feature == "Sex"):
    plt.title("Sex of Patients,0=Female and 1=Male")
    sns.countplot(x='sex',data=df);
    return fig

  elif (feature == "Chest Pain"):
    plt.title("Chest Pain of Patients")

    sns.barplot(x=cp_data['index'],y= cp_data['cp']);
    return fig

  elif (feature == "ECG"):
    plt.title("ECG data of Patients")

    sns.barplot(x=ecg_data['index'],y= ecg_data['restecg']);
    return fig

  elif (feature == "Blood Pressure"):
    plt.title("Resting Blood Pressure (mmHg)")

    sns.distplot(df['trestbps'], kde=True, color = 'magenta')
    plt.xlabel("Resting Blood Pressure (mmHg)")
    return fig

def op(target, sex, cp, age, bp, ch):

  fig = plt.figure()
  plt.rcParams.update({'font.size': 10})
  plt.rc('xtick', labelsize=5)

  print(target, sex, cp, age, bp, ch)

  data = df[((df['target'] == 1) & df['sex'] == sex) & (df['cp'] == cp) & (df['age'] >= age) & (df['trestbps'] >= bp) & (df['chol'] >= ch)  ]
  
  if (data.empty):
    return fig

  if (target == "Age"):
    
    plt.title("Count of age of diseased people")
    plt.xlabel("Age")
    sns.countplot(x='age',data=data);
    return fig

  elif (target == "Sex"):
    
    plt.title("Count of sex of diseased people")
    plt.xlabel("Sex")
    sns.countplot(x='sex',data=data);
    return fig

  if (target == "Chest Pain"):
    
    plt.title("Count of diseased people with cheast pain")
    plt.xlabel("Chest Pain")
    sns.countplot(x='cp',data=data);
    return fig

  if (target == "ECG"):
    
    plt.title("Count of people with low glucose")
    plt.xlabel("ECG")
    sns.countplot(x='restecg',data=data);
    return fig

  if (target == "Blood Pressure"):
    
    plt.title("Count of diseased people with high BP")
    plt.xlabel("BP")
    sns.countplot(x='trestbps',data=data);
    return fig

def prd(model, age, sex,	cp,	trestbps,	chol,	fbs,	restecg,	thalach,	exang,	oldpeak,	slope,	ca,	thal):

  if model == "Random Forest":

    filename = 'DACVV/randomforest.pkl'
    X_test =  np.array([[age,	sex,	cp,	trestbps,	chol,	fbs,	restecg,	thalach,	exang,	oldpeak,	slope,	ca,	thal],[52,	1,	0,	125,	212,	0,	1,	168,	0,	1.0,	2,	2,	3]])
    loaded_model = pickle.load(open(filename, 'rb'))
    result = loaded_model.predict(X_test)[0]
  
  else:
    filename = 'DACVV/scaling.pkl'
    X_test =  np.array([[age,	sex,	cp,	trestbps,	chol,	fbs,	restecg,	thalach,	exang,	oldpeak,	slope,	ca,	thal],[52,	1,	0,	125,	212,	0,	1,	168,	0,	1.0,	2,	2,	3]])
    loaded_model = pickle.load(open(filename, 'rb'))
    result = loaded_model.predict(X_test)[0]


  return "πŸ˜”, You may a Heart Disease" if (result == 1) else "😁, You are Healthy!!!"

inputs = gr.Dropdown(["Age", "Sex", "Chest Pain", "ECG", "Blood Pressure"], label="Input Feature")

outputs = gr.Plot()

visualisation = gr.Interface(
    fn=outbreak,
    inputs=inputs,
    outputs=outputs,
    
)

vis = gr.Interface(
    inputs = [
        gr.Radio(["Age", "Sex", "Chest Pain", "ECG", "Blood Pressure"], label = "Target Feature"),
        gr.Radio([1, 0], label = "Sex"),
        gr.Radio([0,1,2,3], label = "Chest Pain"),
        gr.Slider(25, 80, value=50, step = 1, label = "Age"),
        gr.Slider(94, 200, value=150, step = 1, label = "Blood Pressure"),
        gr.Slider(126, 564, value=130, step = 1, label = "Cholestrol")
        
    ],

    fn=op,
    outputs = gr.Plot(),

    
    examples=[
        ["Age", 1,  2, 50, 100, 222],
        ["Sex", 0, 1, 30, 150, 322],
        ["Chest Pain", 1, 0, 40, 120, 422],
        ["ECG", 1, 3, 70, 98, 522],
        ["Blood Pressure", 0, 1, 28, 170, 262],
    ]
)

pred = gr.Interface(
    inputs = [gr.Radio(["Random Forest", "Scaler"], label = "Model"),
              "number",
              gr.Radio([0, 1], label = "Sex"),
              gr.Radio([0,1,2,3], label = "Chest Pain"),
              gr.Slider(94, 200, value=150, step = 1, label = "Blood Pressure"),
              gr.Slider(126, 564, value=130, step = 1, label = "Cholestrol"),
              gr.Radio([0, 1], label = "FBS"),
              gr.Radio([0, 1, 2], label = "RestECG"),
              gr.Slider(71, 202, value=50, step = 1, label = "Thalach"),
              gr.Radio([0, 1], label = "exang"),
              gr.Slider(0, 6.2, value=3, label = "OldPeak"),
              gr.Radio([0, 1, 2], label = "Slope"),
              gr.Slider(0, 4, value=3, step = 1, label = "CA"),
              gr.Slider(0, 3, value=50, step = 1, label = "Thal"),
              
              
              
              ],

    fn=prd,
    outputs = "text",

    
    examples=[
        ["Random Forest", 52,	1,	0,	125,	212,	0,	1,	168,	0,	1.0,	2,	2,	3],
        ["Scaler", 62,	0,	0,	138,	294,	1,	1,	106,	0,	1.9,	1,	3,	2],
        ["Random Forest", 44,	0,	2,	108,	141,	0,	1,	175,	0,	0.6,	1,	0,	2],
        ["Scaler", 68,	0,	2,	120,	211,	0,	0,	115,	0,	1.5,	1,	0,	2]
    ]
)

interface = gr.TabbedInterface([visualisation, vis, pred], ["Visualisation", "Real Time Analysis", "Predictions"])

interface.launch(inline = False)