vishnun commited on
Commit
b8b90b4
1 Parent(s): 74edd26

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pytesseract
3
+ import torch
4
+ from PIL import Image
5
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
+
7
+ tokenizer = AutoTokenizer.from_pretrained("usvsnsp/code-vs-nl")
8
+ model = AutoModelForSequenceClassification.from_pretrained("usvsnsp/code-vs-nl")
9
+
10
+ def classify_text(text):
11
+ input_ids = tokenizer(text, return_tensors="pt")
12
+ with torch.no_grad():
13
+ logits = model(**input_ids).logits
14
+
15
+ predicted_class_id = logits.argmax().item()
16
+
17
+ return model.config.id2label[predicted_class_id]
18
+
19
+ uploaded_file = st.file_uploader("Upload Image", type= ['png', 'jpg'])
20
+
21
+ if uploaded_file is not None:
22
+ ocr_list = [x for x in pytesseract.image_to_string(uploaded_file).split("\n") if x != '']
23
+ ocr_class = [classify_text(x) for x in ocr_list]
24
+ idx = []
25
+ for i in range(len(ocr_class)):
26
+ if ocr_class[i] == 'Code':
27
+ idx.append(ocr_list[i])
28
+
29
+
30
+ st.text(("\n").join(idx))