import streamlit as st import pytesseract import torch from PIL import Image from transformers import AutoTokenizer, AutoModelForSequenceClassification st.title(':blue[_SnapCode_]') st.markdown("_Extract code blocks out of Screenshots and Images_") with st.spinner('Code vs Natuaral language - Classification model is loading'): model_id = "vishnun/codenlbert-tiny" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) st.success('Model loaded') def classify_text(text): input_ids = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model(**input_ids).logits predicted_class_id = logits.argmax().item() return model.config.id2label[predicted_class_id] uploaded_file = st.file_uploader("Upload Image from which code needs to be extracted", type= ['png', 'jpeg', 'jpg']) if uploaded_file is not None: img = Image.open(uploaded_file) ocr_list = [x for x in pytesseract.image_to_string(img).split("\n") if x != ''] ocr_class = [classify_text(x) for x in ocr_list] idx = [] for i in range(len(ocr_class)): if ocr_class[i].upper() == 'CODE': idx.append(ocr_list[i]) st.markdown('**Uploaded Image**') st.image(img, caption='Uploaded Image') st.markdown("**Retrieved Code Block**") st.code(("\n").join(idx), language="python", line_numbers=False)