File size: 4,867 Bytes
e279f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import streamlit as st
from transformers import (
    AutoTokenizer,
    TFAutoModel,
    AutoModelForSeq2SeqLM,
    GenerationConfig,
)
from datasets import Dataset
from datasets import load_dataset
import pandas as pd
from transformers import pipeline
from peft import PeftModel
import torch


def get_query():
    if "suggestion" not in st.session_state:
        st.session_state.suggestion = None
    if "user_query" not in st.session_state:
        st.session_state.user_query = ""
    user_query = st.session_state.suggestion or st.session_state.user_query
    st.session_state.suggestion = None
    st.session_state.user_query = ""
    return user_query


def render_suggestions():
    def set_query(query):
        st.session_state.suggestion = query

    suggestions = [
        "A girl who is cursed",
        "A movie that talks about the importance of education",
        "Story of a village head",
        "A movie released in 2020s about mistaken identity",
        "Estranged siblings meeting after long time",
    ]
    columns = st.columns(len(suggestions))
    for i, column in enumerate(columns):
        with column:
            st.button(suggestions[i], on_click=set_query, args=[suggestions[i]])


def render_query():
    st.text_input(
        "Search",
        placeholder="Search, e.g. 'A gangster story with a twist'",
        key="user_query",
        label_visibility="collapsed",
    )


@st.cache_data()
def load_model():
    model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
    tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
    model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True)

    return tokenizer, model


@st.cache_data()
def load_peft_model():
    peft_model_base = AutoModelForSeq2SeqLM.from_pretrained(
        "google/flan-t5-small", torch_dtype=torch.bfloat16
    )
    peft_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")

    peft_model = PeftModel.from_pretrained(
        peft_model_base,
        "vishnupriyavr/flan-t5-movie-summary",
        torch_dtype=torch.bfloat16,
        is_trainable=False,
    )
    return peft_model, peft_tokenizer


@st.cache_data()
def load_faiss_dataset():
    faiss_dataset = load_dataset(
        "vishnupriyavr/wiki-movie-plots-with-summaries-faiss-embeddings",
        split="train",
    )
    faiss_dataset.set_format("pandas")
    df = faiss_dataset[:]
    plots_dataset = Dataset.from_pandas(df)
    plots_dataset.add_faiss_index(column="embeddings")
    return plots_dataset


def get_embeddings(text_list):
    tokenizer, model = load_model()
    encoded_input = tokenizer(
        text_list, padding=True, truncation=True, return_tensors="tf"
    )
    encoded_input = {k: v for k, v in encoded_input.items()}
    model_output = model(**encoded_input)
    return cls_pooling(model_output)


def cls_pooling(model_output):
    return model_output.last_hidden_state[:, 0]


def search_movie(user_query, limit):
    question_embedding = get_embeddings([user_query]).numpy()

    plots_dataset = load_faiss_dataset()
    scores, samples = plots_dataset.get_nearest_examples(
        "embeddings", question_embedding, k=limit
    )

    samples_df = pd.DataFrame.from_dict(samples)
    samples_df["scores"] = scores
    samples_df.sort_values("scores", ascending=False, inplace=True)

    samples_df.columns = [
        "release_year",
        "title",
        "cast",
        "wiki_page",
        "plot",
        "plot_length",
        "text",
        "scores",
        "embeddings",
    ]
    return samples_df


def summarized_plot(sample_df, limit):
    peft_model, peft_tokenizer = load_peft_model()
    peft_model_text_output_list = []

    for i in range(limit):
        prompt = f"""
        Summarize the following movie plot.

        {sample_df.iloc[i]["plot"]}

        Summary: """

        input_ids = peft_tokenizer(prompt, return_tensors="pt").input_ids

        peft_model_outputs = peft_model.generate(
            input_ids=input_ids,
            generation_config=GenerationConfig(
                max_new_tokens=250, temperature=0.7, num_beams=1
            ),
        )
        peft_model_text_output = peft_tokenizer.decode(
            peft_model_outputs[0], skip_special_tokens=True
        )
        peft_model_text_output_list.append(peft_model_text_output)

    return peft_model_text_output_list


def aggregate(items):
    # group items by same url
    groups = {}
    for item in items:
        groups.setdefault(item["url"], []).append(item)
    # join text of same url
    results = []
    for group in groups.values():
        result = {}
        result["url"] = group[0]["url"]  # get url from first item
        result["title"] = group[0]["title"]  # get titl from first item
        result["text"] = "\n\n".join([item["text"] for item in group])
        results.append(result)
    return results