File size: 17,807 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
# -*- coding: utf-8 -*-
# Copyright 2020 The MelGAN Authors and Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MelGAN Modules."""
import numpy as np
import tensorflow as tf
from tensorflow_tts.models import BaseModel
from tensorflow_tts.utils import GroupConv1D, WeightNormalization
def get_initializer(initializer_seed=42):
"""Creates a `tf.initializers.glorot_normal` with the given seed.
Args:
initializer_seed: int, initializer seed.
Returns:
GlorotNormal initializer with seed = `initializer_seed`.
"""
return tf.keras.initializers.GlorotNormal(seed=initializer_seed)
class TFReflectionPad1d(tf.keras.layers.Layer):
"""Tensorflow ReflectionPad1d module."""
def __init__(self, padding_size, padding_type="REFLECT", **kwargs):
"""Initialize TFReflectionPad1d module.
Args:
padding_size (int)
padding_type (str) ("CONSTANT", "REFLECT", or "SYMMETRIC". Default is "REFLECT")
"""
super().__init__(**kwargs)
self.padding_size = padding_size
self.padding_type = padding_type
def call(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, T, C).
Returns:
Tensor: Padded tensor (B, T + 2 * padding_size, C).
"""
return tf.pad(
x,
[[0, 0], [self.padding_size, self.padding_size], [0, 0]],
self.padding_type,
)
class TFConvTranspose1d(tf.keras.layers.Layer):
"""Tensorflow ConvTranspose1d module."""
def __init__(
self,
filters,
kernel_size,
strides,
padding,
is_weight_norm,
initializer_seed,
**kwargs
):
"""Initialize TFConvTranspose1d( module.
Args:
filters (int): Number of filters.
kernel_size (int): kernel size.
strides (int): Stride width.
padding (str): Padding type ("same" or "valid").
"""
super().__init__(**kwargs)
self.conv1d_transpose = tf.keras.layers.Conv2DTranspose(
filters=filters,
kernel_size=(kernel_size, 1),
strides=(strides, 1),
padding="same",
kernel_initializer=get_initializer(initializer_seed),
)
if is_weight_norm:
self.conv1d_transpose = WeightNormalization(self.conv1d_transpose)
def call(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, T, C).
Returns:
Tensor: Output tensor (B, T', C').
"""
x = tf.expand_dims(x, 2)
x = self.conv1d_transpose(x)
x = tf.squeeze(x, 2)
return x
class TFResidualStack(tf.keras.layers.Layer):
"""Tensorflow ResidualStack module."""
def __init__(
self,
kernel_size,
filters,
dilation_rate,
use_bias,
nonlinear_activation,
nonlinear_activation_params,
is_weight_norm,
initializer_seed,
**kwargs
):
"""Initialize TFResidualStack module.
Args:
kernel_size (int): Kernel size.
filters (int): Number of filters.
dilation_rate (int): Dilation rate.
use_bias (bool): Whether to add bias parameter in convolution layers.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
"""
super().__init__(**kwargs)
self.blocks = [
getattr(tf.keras.layers, nonlinear_activation)(
**nonlinear_activation_params
),
TFReflectionPad1d((kernel_size - 1) // 2 * dilation_rate),
tf.keras.layers.Conv1D(
filters=filters,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
),
getattr(tf.keras.layers, nonlinear_activation)(
**nonlinear_activation_params
),
tf.keras.layers.Conv1D(
filters=filters,
kernel_size=1,
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
),
]
self.shortcut = tf.keras.layers.Conv1D(
filters=filters,
kernel_size=1,
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
name="shortcut",
)
# apply weightnorm
if is_weight_norm:
self._apply_weightnorm(self.blocks)
self.shortcut = WeightNormalization(self.shortcut)
def call(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Input tensor (B, T, C).
Returns:
Tensor: Output tensor (B, T, C).
"""
_x = tf.identity(x)
for layer in self.blocks:
_x = layer(_x)
shortcut = self.shortcut(x)
return shortcut + _x
def _apply_weightnorm(self, list_layers):
"""Try apply weightnorm for all layer in list_layers."""
for i in range(len(list_layers)):
try:
layer_name = list_layers[i].name.lower()
if "conv1d" in layer_name or "dense" in layer_name:
list_layers[i] = WeightNormalization(list_layers[i])
except Exception:
pass
class TFMelGANGenerator(BaseModel):
"""Tensorflow MelGAN generator module."""
def __init__(self, config, **kwargs):
"""Initialize TFMelGANGenerator module.
Args:
config: config object of Melgan generator.
"""
super().__init__(**kwargs)
# check hyper parameter is valid or not
assert config.filters >= np.prod(config.upsample_scales)
assert config.filters % (2 ** len(config.upsample_scales)) == 0
# add initial layer
layers = []
layers += [
TFReflectionPad1d(
(config.kernel_size - 1) // 2,
padding_type=config.padding_type,
name="first_reflect_padding",
),
tf.keras.layers.Conv1D(
filters=config.filters,
kernel_size=config.kernel_size,
use_bias=config.use_bias,
kernel_initializer=get_initializer(config.initializer_seed),
),
]
for i, upsample_scale in enumerate(config.upsample_scales):
# add upsampling layer
layers += [
getattr(tf.keras.layers, config.nonlinear_activation)(
**config.nonlinear_activation_params
),
TFConvTranspose1d(
filters=config.filters // (2 ** (i + 1)),
kernel_size=upsample_scale * 2,
strides=upsample_scale,
padding="same",
is_weight_norm=config.is_weight_norm,
initializer_seed=config.initializer_seed,
name="conv_transpose_._{}".format(i),
),
]
# ad residual stack layer
for j in range(config.stacks):
layers += [
TFResidualStack(
kernel_size=config.stack_kernel_size,
filters=config.filters // (2 ** (i + 1)),
dilation_rate=config.stack_kernel_size ** j,
use_bias=config.use_bias,
nonlinear_activation=config.nonlinear_activation,
nonlinear_activation_params=config.nonlinear_activation_params,
is_weight_norm=config.is_weight_norm,
initializer_seed=config.initializer_seed,
name="residual_stack_._{}._._{}".format(i, j),
)
]
# add final layer
layers += [
getattr(tf.keras.layers, config.nonlinear_activation)(
**config.nonlinear_activation_params
),
TFReflectionPad1d(
(config.kernel_size - 1) // 2,
padding_type=config.padding_type,
name="last_reflect_padding",
),
tf.keras.layers.Conv1D(
filters=config.out_channels,
kernel_size=config.kernel_size,
use_bias=config.use_bias,
kernel_initializer=get_initializer(config.initializer_seed),
dtype=tf.float32,
),
]
if config.use_final_nolinear_activation:
layers += [tf.keras.layers.Activation("tanh", dtype=tf.float32)]
if config.is_weight_norm is True:
self._apply_weightnorm(layers)
self.melgan = tf.keras.models.Sequential(layers)
def call(self, mels, **kwargs):
"""Calculate forward propagation.
Args:
c (Tensor): Input tensor (B, T, channels)
Returns:
Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)
"""
return self.inference(mels)
@tf.function(
input_signature=[
tf.TensorSpec(shape=[None, None, 80], dtype=tf.float32, name="mels")
]
)
def inference(self, mels):
return self.melgan(mels)
@tf.function(
input_signature=[
tf.TensorSpec(shape=[1, None, 80], dtype=tf.float32, name="mels")
]
)
def inference_tflite(self, mels):
return self.melgan(mels)
def _apply_weightnorm(self, list_layers):
"""Try apply weightnorm for all layer in list_layers."""
for i in range(len(list_layers)):
try:
layer_name = list_layers[i].name.lower()
if "conv1d" in layer_name or "dense" in layer_name:
list_layers[i] = WeightNormalization(list_layers[i])
except Exception:
pass
def _build(self):
"""Build model by passing fake input."""
fake_mels = tf.random.uniform(shape=[1, 100, 80], dtype=tf.float32)
self(fake_mels)
class TFMelGANDiscriminator(tf.keras.layers.Layer):
"""Tensorflow MelGAN generator module."""
def __init__(
self,
out_channels=1,
kernel_sizes=[5, 3],
filters=16,
max_downsample_filters=1024,
use_bias=True,
downsample_scales=[4, 4, 4, 4],
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"alpha": 0.2},
padding_type="REFLECT",
is_weight_norm=True,
initializer_seed=0.02,
**kwargs
):
"""Initilize MelGAN discriminator module.
Args:
out_channels (int): Number of output channels.
kernel_sizes (list): List of two kernel sizes. The prod will be used for the first conv layer,
and the first and the second kernel sizes will be used for the last two layers.
For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15.
the last two layers' kernel size will be 5 and 3, respectively.
filters (int): Initial number of filters for conv layer.
max_downsample_filters (int): Maximum number of filters for downsampling layers.
use_bias (bool): Whether to add bias parameter in convolution layers.
downsample_scales (list): List of downsampling scales.
nonlinear_activation (str): Activation function module name.
nonlinear_activation_params (dict): Hyperparameters for activation function.
padding_type (str): Padding type (support only "REFLECT", "CONSTANT", "SYMMETRIC")
"""
super().__init__(**kwargs)
discriminator = []
# check kernel_size is valid
assert len(kernel_sizes) == 2
assert kernel_sizes[0] % 2 == 1
assert kernel_sizes[1] % 2 == 1
# add first layer
discriminator = [
TFReflectionPad1d(
(np.prod(kernel_sizes) - 1) // 2, padding_type=padding_type
),
tf.keras.layers.Conv1D(
filters=filters,
kernel_size=int(np.prod(kernel_sizes)),
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
),
getattr(tf.keras.layers, nonlinear_activation)(
**nonlinear_activation_params
),
]
# add downsample layers
in_chs = filters
with tf.keras.utils.CustomObjectScope({"GroupConv1D": GroupConv1D}):
for downsample_scale in downsample_scales:
out_chs = min(in_chs * downsample_scale, max_downsample_filters)
discriminator += [
GroupConv1D(
filters=out_chs,
kernel_size=downsample_scale * 10 + 1,
strides=downsample_scale,
padding="same",
use_bias=use_bias,
groups=in_chs // 4,
kernel_initializer=get_initializer(initializer_seed),
)
]
discriminator += [
getattr(tf.keras.layers, nonlinear_activation)(
**nonlinear_activation_params
)
]
in_chs = out_chs
# add final layers
out_chs = min(in_chs * 2, max_downsample_filters)
discriminator += [
tf.keras.layers.Conv1D(
filters=out_chs,
kernel_size=kernel_sizes[0],
padding="same",
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
)
]
discriminator += [
getattr(tf.keras.layers, nonlinear_activation)(
**nonlinear_activation_params
)
]
discriminator += [
tf.keras.layers.Conv1D(
filters=out_channels,
kernel_size=kernel_sizes[1],
padding="same",
use_bias=use_bias,
kernel_initializer=get_initializer(initializer_seed),
)
]
if is_weight_norm is True:
self._apply_weightnorm(discriminator)
self.disciminator = discriminator
def call(self, x, **kwargs):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, T, 1).
Returns:
List: List of output tensors of each layer.
"""
outs = []
for f in self.disciminator:
x = f(x)
outs += [x]
return outs
def _apply_weightnorm(self, list_layers):
"""Try apply weightnorm for all layer in list_layers."""
for i in range(len(list_layers)):
try:
layer_name = list_layers[i].name.lower()
if "conv1d" in layer_name or "dense" in layer_name:
list_layers[i] = WeightNormalization(list_layers[i])
except Exception:
pass
class TFMelGANMultiScaleDiscriminator(BaseModel):
"""MelGAN multi-scale discriminator module."""
def __init__(self, config, **kwargs):
"""Initilize MelGAN multi-scale discriminator module.
Args:
config: config object for melgan discriminator
"""
super().__init__(**kwargs)
self.discriminator = []
# add discriminator
for i in range(config.scales):
self.discriminator += [
TFMelGANDiscriminator(
out_channels=config.out_channels,
kernel_sizes=config.kernel_sizes,
filters=config.filters,
max_downsample_filters=config.max_downsample_filters,
use_bias=config.use_bias,
downsample_scales=config.downsample_scales,
nonlinear_activation=config.nonlinear_activation,
nonlinear_activation_params=config.nonlinear_activation_params,
padding_type=config.padding_type,
is_weight_norm=config.is_weight_norm,
initializer_seed=config.initializer_seed,
name="melgan_discriminator_scale_._{}".format(i),
)
]
self.pooling = getattr(tf.keras.layers, config.downsample_pooling)(
**config.downsample_pooling_params
)
def call(self, x, **kwargs):
"""Calculate forward propagation.
Args:
x (Tensor): Input noise signal (B, T, 1).
Returns:
List: List of list of each discriminator outputs, which consists of each layer output tensors.
"""
outs = []
for f in self.discriminator:
outs += [f(x)]
x = self.pooling(x)
return outs
|