File size: 6,368 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# -*- coding: utf-8 -*-
# Copyright 2020 TensorFlowTTS Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Perform preprocessing and raw feature extraction for LJSpeech Ultimate dataset."""
import os
import re
import numpy as np
import soundfile as sf
from dataclasses import dataclass
from tensorflow_tts.processor import BaseProcessor
from tensorflow_tts.utils import cleaners
from tensorflow_tts.utils.utils import PROCESSOR_FILE_NAME
from g2p_en import G2p as grapheme_to_phn
valid_symbols = [
"AA",
"AA0",
"AA1",
"AA2",
"AE",
"AE0",
"AE1",
"AE2",
"AH",
"AH0",
"AH1",
"AH2",
"AO",
"AO0",
"AO1",
"AO2",
"AW",
"AW0",
"AW1",
"AW2",
"AY",
"AY0",
"AY1",
"AY2",
"B",
"CH",
"D",
"DH",
"EH",
"EH0",
"EH1",
"EH2",
"ER",
"ER0",
"ER1",
"ER2",
"EY",
"EY0",
"EY1",
"EY2",
"F",
"G",
"HH",
"IH",
"IH0",
"IH1",
"IH2",
"IY",
"IY0",
"IY1",
"IY2",
"JH",
"K",
"L",
"M",
"N",
"NG",
"OW",
"OW0",
"OW1",
"OW2",
"OY",
"OY0",
"OY1",
"OY2",
"P",
"R",
"S",
"SH",
"T",
"TH",
"UH",
"UH0",
"UH1",
"UH2",
"UW",
"UW0",
"UW1",
"UW2",
"V",
"W",
"Y",
"Z",
"ZH",
]
_pad = "pad"
_eos = "eos"
_punctuation = "!'(),.:;?" # Unlike LJSpeech, we do not use spaces since we are phoneme only and spaces lead to very bad attention performance with phonetic input.
_special = "-"
# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
_arpabet = ["@" + s for s in valid_symbols]
# Export all symbols:
LJSPEECH_U_SYMBOLS = [_pad] + list(_special) + list(_punctuation) + _arpabet + [_eos]
# Regular expression matching text enclosed in curly braces:
_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)")
_arpa_exempt = _punctuation + _special
arpa_g2p = grapheme_to_phn()
@dataclass
class LJSpeechUltimateProcessor(BaseProcessor):
"""LJSpeech Ultimate processor."""
cleaner_names: str = "english_cleaners"
positions = {
"wave_file": 0,
"text_norm": 1,
}
train_f_name: str = "filelist.txt"
def create_items(self):
if self.data_dir:
with open(
os.path.join(self.data_dir, self.train_f_name), encoding="utf-8"
) as f:
self.items = [self.split_line(self.data_dir, line, "|") for line in f]
def split_line(self, data_dir, line, split):
parts = line.strip().split(split)
wave_file = parts[self.positions["wave_file"]]
text_norm = parts[self.positions["text_norm"]]
wav_path = os.path.join(data_dir, wave_file)
speaker_name = "ljspeech"
return text_norm, wav_path, speaker_name
def setup_eos_token(self):
return _eos
def save_pretrained(self, saved_path):
os.makedirs(saved_path, exist_ok=True)
self._save_mapper(os.path.join(saved_path, PROCESSOR_FILE_NAME), {})
def to_arpa(self, in_str):
phn_arr = arpa_g2p(in_str)
phn_arr = [x for x in phn_arr if x != " "]
arpa_str = "{"
in_chain = True
# Iterative array-traverse approach to build ARPA string. Phonemes must be in curly braces, but not punctuation
for token in phn_arr:
if token in _arpa_exempt and in_chain:
arpa_str += " }"
in_chain = False
if token not in _arpa_exempt and not in_chain:
arpa_str += " {"
in_chain = True
arpa_str += " " + token
if in_chain:
arpa_str += " }"
return arpa_str
def get_one_sample(self, item):
text, wav_path, speaker_name = item
# Check if this line is already an ARPA string by searching for the trademark curly brace. If not, we apply
if not "{" in text:
text = self.to_arpa(text)
# normalize audio signal to be [-1, 1], soundfile already norm.
audio, rate = sf.read(wav_path)
audio = audio.astype(np.float32)
# convert text to ids
text_ids = np.asarray(self.text_to_sequence(text), np.int32)
sample = {
"raw_text": text,
"text_ids": text_ids,
"audio": audio,
"utt_id": os.path.split(wav_path)[-1].split(".")[0],
"speaker_name": speaker_name,
"rate": rate,
}
return sample
def text_to_sequence(self, text):
sequence = []
# Check for curly braces and treat their contents as ARPAbet:
while len(text):
m = _curly_re.match(text)
if not m:
sequence += self._symbols_to_sequence(
self._clean_text(text, [self.cleaner_names])
)
break
sequence += self._symbols_to_sequence(
self._clean_text(m.group(1), [self.cleaner_names])
)
sequence += self._arpabet_to_sequence(m.group(2))
text = m.group(3)
# add eos tokens
sequence += [self.eos_id]
return sequence
def _clean_text(self, text, cleaner_names):
for name in cleaner_names:
cleaner = getattr(cleaners, name)
if not cleaner:
raise Exception("Unknown cleaner: %s" % name)
text = cleaner(text)
return text
def _symbols_to_sequence(self, symbols):
return [self.symbol_to_id[s] for s in symbols if self._should_keep_symbol(s)]
def _arpabet_to_sequence(self, text):
return self._symbols_to_sequence(["@" + s for s in text.split()])
def _should_keep_symbol(self, s):
return s in self.symbol_to_id and s != "_" and s != "~"
|