File size: 6,368 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
# Copyright 2020 TensorFlowTTS Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Perform preprocessing and raw feature extraction for LJSpeech Ultimate dataset."""

import os
import re

import numpy as np
import soundfile as sf
from dataclasses import dataclass
from tensorflow_tts.processor import BaseProcessor
from tensorflow_tts.utils import cleaners
from tensorflow_tts.utils.utils import PROCESSOR_FILE_NAME
from g2p_en import G2p as grapheme_to_phn

valid_symbols = [
    "AA",
    "AA0",
    "AA1",
    "AA2",
    "AE",
    "AE0",
    "AE1",
    "AE2",
    "AH",
    "AH0",
    "AH1",
    "AH2",
    "AO",
    "AO0",
    "AO1",
    "AO2",
    "AW",
    "AW0",
    "AW1",
    "AW2",
    "AY",
    "AY0",
    "AY1",
    "AY2",
    "B",
    "CH",
    "D",
    "DH",
    "EH",
    "EH0",
    "EH1",
    "EH2",
    "ER",
    "ER0",
    "ER1",
    "ER2",
    "EY",
    "EY0",
    "EY1",
    "EY2",
    "F",
    "G",
    "HH",
    "IH",
    "IH0",
    "IH1",
    "IH2",
    "IY",
    "IY0",
    "IY1",
    "IY2",
    "JH",
    "K",
    "L",
    "M",
    "N",
    "NG",
    "OW",
    "OW0",
    "OW1",
    "OW2",
    "OY",
    "OY0",
    "OY1",
    "OY2",
    "P",
    "R",
    "S",
    "SH",
    "T",
    "TH",
    "UH",
    "UH0",
    "UH1",
    "UH2",
    "UW",
    "UW0",
    "UW1",
    "UW2",
    "V",
    "W",
    "Y",
    "Z",
    "ZH",
]

_pad = "pad"
_eos = "eos"
_punctuation = "!'(),.:;?"  # Unlike LJSpeech, we do not use spaces since we are phoneme only and spaces lead to very bad attention performance with phonetic input.
_special = "-"

# Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
_arpabet = ["@" + s for s in valid_symbols]

# Export all symbols:
LJSPEECH_U_SYMBOLS = [_pad] + list(_special) + list(_punctuation) + _arpabet + [_eos]

# Regular expression matching text enclosed in curly braces:
_curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)")


_arpa_exempt = _punctuation + _special

arpa_g2p = grapheme_to_phn()


@dataclass
class LJSpeechUltimateProcessor(BaseProcessor):
    """LJSpeech Ultimate processor."""

    cleaner_names: str = "english_cleaners"
    positions = {
        "wave_file": 0,
        "text_norm": 1,
    }
    train_f_name: str = "filelist.txt"

    def create_items(self):
        if self.data_dir:
            with open(
                os.path.join(self.data_dir, self.train_f_name), encoding="utf-8"
            ) as f:
                self.items = [self.split_line(self.data_dir, line, "|") for line in f]

    def split_line(self, data_dir, line, split):
        parts = line.strip().split(split)
        wave_file = parts[self.positions["wave_file"]]
        text_norm = parts[self.positions["text_norm"]]
        wav_path = os.path.join(data_dir, wave_file)
        speaker_name = "ljspeech"
        return text_norm, wav_path, speaker_name

    def setup_eos_token(self):
        return _eos

    def save_pretrained(self, saved_path):
        os.makedirs(saved_path, exist_ok=True)
        self._save_mapper(os.path.join(saved_path, PROCESSOR_FILE_NAME), {})

    def to_arpa(self, in_str):
        phn_arr = arpa_g2p(in_str)
        phn_arr = [x for x in phn_arr if x != " "]

        arpa_str = "{"
        in_chain = True

        # Iterative array-traverse approach to build ARPA string. Phonemes must be in curly braces, but not punctuation
        for token in phn_arr:
            if token in _arpa_exempt and in_chain:
                arpa_str += " }"
                in_chain = False

            if token not in _arpa_exempt and not in_chain:
                arpa_str += " {"
                in_chain = True

            arpa_str += " " + token

        if in_chain:
            arpa_str += " }"

        return arpa_str

    def get_one_sample(self, item):
        text, wav_path, speaker_name = item

        # Check if this line is already an ARPA string by searching for the trademark curly brace. If not, we apply
        if not "{" in text:
            text = self.to_arpa(text)

        # normalize audio signal to be [-1, 1], soundfile already norm.
        audio, rate = sf.read(wav_path)
        audio = audio.astype(np.float32)

        # convert text to ids
        text_ids = np.asarray(self.text_to_sequence(text), np.int32)

        sample = {
            "raw_text": text,
            "text_ids": text_ids,
            "audio": audio,
            "utt_id": os.path.split(wav_path)[-1].split(".")[0],
            "speaker_name": speaker_name,
            "rate": rate,
        }

        return sample

    def text_to_sequence(self, text):
        sequence = []
        # Check for curly braces and treat their contents as ARPAbet:
        while len(text):
            m = _curly_re.match(text)
            if not m:
                sequence += self._symbols_to_sequence(
                    self._clean_text(text, [self.cleaner_names])
                )
                break
            sequence += self._symbols_to_sequence(
                self._clean_text(m.group(1), [self.cleaner_names])
            )
            sequence += self._arpabet_to_sequence(m.group(2))
            text = m.group(3)

        # add eos tokens
        sequence += [self.eos_id]
        return sequence

    def _clean_text(self, text, cleaner_names):
        for name in cleaner_names:
            cleaner = getattr(cleaners, name)
            if not cleaner:
                raise Exception("Unknown cleaner: %s" % name)
            text = cleaner(text)
        return text

    def _symbols_to_sequence(self, symbols):
        return [self.symbol_to_id[s] for s in symbols if self._should_keep_symbol(s)]

    def _arpabet_to_sequence(self, text):
        return self._symbols_to_sequence(["@" + s for s in text.split()])

    def _should_keep_symbol(self, s):
        return s in self.symbol_to_id and s != "_" and s != "~"