File size: 10,464 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# -*- coding: utf-8 -*-
# Copyright 2020 TensorFlowTTS Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train Hifigan."""
import tensorflow as tf
physical_devices = tf.config.list_physical_devices("GPU")
for i in range(len(physical_devices)):
tf.config.experimental.set_memory_growth(physical_devices[i], True)
import sys
sys.path.append(".")
import argparse
import logging
import os
import numpy as np
import soundfile as sf
import yaml
from tqdm import tqdm
import tensorflow_tts
from examples.melgan.audio_mel_dataset import AudioMelDataset
from examples.melgan.train_melgan import collater
from examples.melgan_stft.train_melgan_stft import MultiSTFTMelganTrainer
from tensorflow_tts.configs import (
HifiGANDiscriminatorConfig,
HifiGANGeneratorConfig,
MelGANDiscriminatorConfig,
)
from tensorflow_tts.models import (
TFHifiGANGenerator,
TFHifiGANMultiPeriodDiscriminator,
TFMelGANMultiScaleDiscriminator,
)
from tensorflow_tts.utils import return_strategy
class TFHifiGANDiscriminator(tf.keras.Model):
def __init__(self, multiperiod_dis, multiscale_dis, **kwargs):
super().__init__(**kwargs)
self.multiperiod_dis = multiperiod_dis
self.multiscale_dis = multiscale_dis
def call(self, x):
outs = []
period_outs = self.multiperiod_dis(x)
scale_outs = self.multiscale_dis(x)
outs.extend(period_outs)
outs.extend(scale_outs)
return outs
def main():
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train Hifigan (See detail in examples/hifigan/train_hifigan.py)"
)
parser.add_argument(
"--train-dir",
default=None,
type=str,
help="directory including training data. ",
)
parser.add_argument(
"--dev-dir",
default=None,
type=str,
help="directory including development data. ",
)
parser.add_argument(
"--use-norm", default=1, type=int, help="use norm mels for training or raw."
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save checkpoints."
)
parser.add_argument(
"--config", type=str, required=True, help="yaml format configuration file."
)
parser.add_argument(
"--resume",
default="",
type=str,
nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
parser.add_argument(
"--generator_mixed_precision",
default=0,
type=int,
help="using mixed precision for generator or not.",
)
parser.add_argument(
"--discriminator_mixed_precision",
default=0,
type=int,
help="using mixed precision for discriminator or not.",
)
parser.add_argument(
"--pretrained",
default="",
type=str,
nargs="?",
help="path of .h5 melgan generator to load weights from",
)
args = parser.parse_args()
# return strategy
STRATEGY = return_strategy()
# set mixed precision config
if args.generator_mixed_precision == 1 or args.discriminator_mixed_precision == 1:
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})
args.generator_mixed_precision = bool(args.generator_mixed_precision)
args.discriminator_mixed_precision = bool(args.discriminator_mixed_precision)
args.use_norm = bool(args.use_norm)
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# check arguments
if args.train_dir is None:
raise ValueError("Please specify --train-dir")
if args.dev_dir is None:
raise ValueError("Please specify either --valid-dir")
# load and save config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
config["version"] = tensorflow_tts.__version__
with open(os.path.join(args.outdir, "config.yml"), "w") as f:
yaml.dump(config, f, Dumper=yaml.Dumper)
for key, value in config.items():
logging.info(f"{key} = {value}")
# get dataset
if config["remove_short_samples"]:
mel_length_threshold = config["batch_max_steps"] // config[
"hop_size"
] + 2 * config["hifigan_generator_params"].get("aux_context_window", 0)
else:
mel_length_threshold = None
if config["format"] == "npy":
audio_query = "*-wave.npy"
mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy"
audio_load_fn = np.load
mel_load_fn = np.load
else:
raise ValueError("Only npy are supported.")
# define train/valid dataset
train_dataset = AudioMelDataset(
root_dir=args.train_dir,
audio_query=audio_query,
mel_query=mel_query,
audio_load_fn=audio_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
).create(
is_shuffle=config["is_shuffle"],
map_fn=lambda items: collater(
items,
batch_max_steps=tf.constant(config["batch_max_steps"], dtype=tf.int32),
hop_size=tf.constant(config["hop_size"], dtype=tf.int32),
),
allow_cache=config["allow_cache"],
batch_size=config["batch_size"]
* STRATEGY.num_replicas_in_sync
* config["gradient_accumulation_steps"],
)
valid_dataset = AudioMelDataset(
root_dir=args.dev_dir,
audio_query=audio_query,
mel_query=mel_query,
audio_load_fn=audio_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
).create(
is_shuffle=config["is_shuffle"],
map_fn=lambda items: collater(
items,
batch_max_steps=tf.constant(
config["batch_max_steps_valid"], dtype=tf.int32
),
hop_size=tf.constant(config["hop_size"], dtype=tf.int32),
),
allow_cache=config["allow_cache"],
batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync,
)
# define trainer
trainer = MultiSTFTMelganTrainer(
steps=0,
epochs=0,
config=config,
strategy=STRATEGY,
is_generator_mixed_precision=args.generator_mixed_precision,
is_discriminator_mixed_precision=args.discriminator_mixed_precision,
)
with STRATEGY.scope():
# define generator and discriminator
generator = TFHifiGANGenerator(
HifiGANGeneratorConfig(**config["hifigan_generator_params"]),
name="hifigan_generator",
)
multiperiod_discriminator = TFHifiGANMultiPeriodDiscriminator(
HifiGANDiscriminatorConfig(**config["hifigan_discriminator_params"]),
name="hifigan_multiperiod_discriminator",
)
multiscale_discriminator = TFMelGANMultiScaleDiscriminator(
MelGANDiscriminatorConfig(
**config["melgan_discriminator_params"],
name="melgan_multiscale_discriminator",
)
)
discriminator = TFHifiGANDiscriminator(
multiperiod_discriminator,
multiscale_discriminator,
name="hifigan_discriminator",
)
# dummy input to build model.
fake_mels = tf.random.uniform(shape=[1, 100, 80], dtype=tf.float32)
y_hat = generator(fake_mels)
discriminator(y_hat)
if len(args.pretrained) > 1:
generator.load_weights(args.pretrained)
logging.info(
f"Successfully loaded pretrained weight from {args.pretrained}."
)
generator.summary()
discriminator.summary()
# define optimizer
generator_lr_fn = getattr(
tf.keras.optimizers.schedules, config["generator_optimizer_params"]["lr_fn"]
)(**config["generator_optimizer_params"]["lr_params"])
discriminator_lr_fn = getattr(
tf.keras.optimizers.schedules,
config["discriminator_optimizer_params"]["lr_fn"],
)(**config["discriminator_optimizer_params"]["lr_params"])
gen_optimizer = tf.keras.optimizers.Adam(
learning_rate=generator_lr_fn,
amsgrad=config["generator_optimizer_params"]["amsgrad"],
)
dis_optimizer = tf.keras.optimizers.Adam(
learning_rate=discriminator_lr_fn,
amsgrad=config["discriminator_optimizer_params"]["amsgrad"],
)
trainer.compile(
gen_model=generator,
dis_model=discriminator,
gen_optimizer=gen_optimizer,
dis_optimizer=dis_optimizer,
)
# start training
try:
trainer.fit(
train_dataset,
valid_dataset,
saved_path=os.path.join(config["outdir"], "checkpoints/"),
resume=args.resume,
)
except KeyboardInterrupt:
trainer.save_checkpoint()
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
main()
|