File size: 20,390 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Perform preprocessing, with raw feature extraction and normalization of train/valid split."""
import argparse
import glob
import logging
import os
import yaml
import librosa
import numpy as np
import pyworld as pw
from functools import partial
from multiprocessing import Pool
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from tensorflow_tts.processor import LJSpeechProcessor
from tensorflow_tts.processor import BakerProcessor
from tensorflow_tts.processor import KSSProcessor
from tensorflow_tts.processor import LibriTTSProcessor
from tensorflow_tts.processor import ThorstenProcessor
from tensorflow_tts.processor import LJSpeechUltimateProcessor
from tensorflow_tts.processor import SynpaflexProcessor
from tensorflow_tts.processor import JSUTProcessor
from tensorflow_tts.processor.ljspeech import LJSPEECH_SYMBOLS
from tensorflow_tts.processor.baker import BAKER_SYMBOLS
from tensorflow_tts.processor.kss import KSS_SYMBOLS
from tensorflow_tts.processor.libritts import LIBRITTS_SYMBOLS
from tensorflow_tts.processor.thorsten import THORSTEN_SYMBOLS
from tensorflow_tts.processor.ljspeechu import LJSPEECH_U_SYMBOLS
from tensorflow_tts.processor.synpaflex import SYNPAFLEX_SYMBOLS
from tensorflow_tts.processor.jsut import JSUT_SYMBOLS
from tensorflow_tts.utils import remove_outlier
os.environ["CUDA_VISIBLE_DEVICES"] = ""
def parse_and_config():
"""Parse arguments and set configuration parameters."""
parser = argparse.ArgumentParser(
description="Preprocess audio and text features "
"(See detail in tensorflow_tts/bin/preprocess_dataset.py)."
)
parser.add_argument(
"--rootdir",
default=None,
type=str,
required=True,
help="Directory containing the dataset files.",
)
parser.add_argument(
"--outdir",
default=None,
type=str,
required=True,
help="Output directory where features will be saved.",
)
parser.add_argument(
"--dataset",
type=str,
default="ljspeech",
choices=["ljspeech", "kss", "libritts", "baker", "thorsten", "ljspeechu", "synpaflex", "jsut"],
help="Dataset to preprocess.",
)
parser.add_argument(
"--config", type=str, required=True, help="YAML format configuration file."
)
parser.add_argument(
"--n_cpus",
type=int,
default=4,
required=False,
help="Number of CPUs to use in parallel.",
)
parser.add_argument(
"--test_size",
type=float,
default=0.05,
required=False,
help="Proportion of files to use as test dataset.",
)
parser.add_argument(
"--verbose",
type=int,
default=0,
choices=[0, 1, 2],
help="Logging level. 0: DEBUG, 1: INFO and WARNING, 2: INFO, WARNING, and ERROR",
)
args = parser.parse_args()
# set logger
FORMAT = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
log_level = {0: logging.DEBUG, 1: logging.WARNING, 2: logging.ERROR}
logging.basicConfig(level=log_level[args.verbose], format=FORMAT)
# load config
config = yaml.load(open(args.config), Loader=yaml.SafeLoader)
config.update(vars(args))
# config checks
assert config["format"] == "npy", "'npy' is the only supported format."
return config
def ph_based_trim(
config,
utt_id: str,
text_ids: np.array,
raw_text: str,
audio: np.array,
hop_size: int,
) -> (bool, np.array, np.array):
"""
Args:
config: Parsed yaml config
utt_id: file name
text_ids: array with text ids
raw_text: raw text of file
audio: parsed wav file
hop_size: Hop size
Returns: (bool, np.array, np.array) => if trimmed return True, new text_ids, new audio_array
"""
os.makedirs(os.path.join(config["rootdir"], "trimmed-durations"), exist_ok=True)
duration_path = config.get(
"duration_path", os.path.join(config["rootdir"], "durations")
)
duration_fixed_path = config.get(
"duration_fixed_path", os.path.join(config["rootdir"], "trimmed-durations")
)
sil_ph = ["SIL", "END"] # TODO FIX hardcoded values
text = raw_text.split(" ")
trim_start, trim_end = False, False
if text[0] in sil_ph:
trim_start = True
if text[-1] in sil_ph:
trim_end = True
if not trim_start and not trim_end:
return False, text_ids, audio
idx_start, idx_end = (
0 if not trim_start else 1,
text_ids.__len__() if not trim_end else -1,
)
text_ids = text_ids[idx_start:idx_end]
durations = np.load(os.path.join(duration_path, f"{utt_id}-durations.npy"))
if trim_start:
s_trim = int(durations[0] * hop_size)
audio = audio[s_trim:]
if trim_end:
e_trim = int(durations[-1] * hop_size)
audio = audio[:-e_trim]
durations = durations[idx_start:idx_end]
np.save(os.path.join(duration_fixed_path, f"{utt_id}-durations.npy"), durations)
return True, text_ids, audio
def gen_audio_features(item, config):
"""Generate audio features and transformations
Args:
item (Dict): dictionary containing the attributes to encode.
config (Dict): configuration dictionary.
Returns:
(bool): keep this sample or not.
mel (ndarray): mel matrix in np.float32.
energy (ndarray): energy audio profile.
f0 (ndarray): fundamental frequency.
item (Dict): dictionary containing the updated attributes.
"""
# get info from sample.
audio = item["audio"]
utt_id = item["utt_id"]
rate = item["rate"]
# check audio properties
assert len(audio.shape) == 1, f"{utt_id} seems to be multi-channel signal."
assert np.abs(audio).max() <= 1.0, f"{utt_id} is different from 16 bit PCM."
# check sample rate
if rate != config["sampling_rate"]:
audio = librosa.resample(audio, rate, config["sampling_rate"])
logging.info(f"{utt_id} sampling rate is {rate}, not {config['sampling_rate']}, we resample it.")
# trim silence
if config["trim_silence"]:
if "trim_mfa" in config and config["trim_mfa"]:
_, item["text_ids"], audio = ph_based_trim(
config,
utt_id,
item["text_ids"],
item["raw_text"],
audio,
config["hop_size"],
)
if (
audio.__len__() < 1
): # very short files can get trimmed fully if mfa didnt extract any tokens LibriTTS maybe take only longer files?
logging.warning(
f"File have only silence or MFA didnt extract any token {utt_id}"
)
return False, None, None, None, item
else:
audio, _ = librosa.effects.trim(
audio,
top_db=config["trim_threshold_in_db"],
frame_length=config["trim_frame_size"],
hop_length=config["trim_hop_size"],
)
# resample audio if necessary
if "sampling_rate_for_feats" in config:
audio = librosa.resample(audio, rate, config["sampling_rate_for_feats"])
sampling_rate = config["sampling_rate_for_feats"]
assert (
config["hop_size"] * config["sampling_rate_for_feats"] % rate == 0
), "'hop_size' must be 'int' value. Please check if 'sampling_rate_for_feats' is correct."
hop_size = config["hop_size"] * config["sampling_rate_for_feats"] // rate
else:
sampling_rate = config["sampling_rate"]
hop_size = config["hop_size"]
# get spectrogram
D = librosa.stft(
audio,
n_fft=config["fft_size"],
hop_length=hop_size,
win_length=config["win_length"],
window=config["window"],
pad_mode="reflect",
)
S, _ = librosa.magphase(D) # (#bins, #frames)
# get mel basis
fmin = 0 if config["fmin"] is None else config["fmin"]
fmax = sampling_rate // 2 if config["fmax"] is None else config["fmax"]
mel_basis = librosa.filters.mel(
sr=sampling_rate,
n_fft=config["fft_size"],
n_mels=config["num_mels"],
fmin=fmin,
fmax=fmax,
)
mel = np.log10(np.maximum(np.dot(mel_basis, S), 1e-10)).T # (#frames, #bins)
# check audio and feature length
audio = np.pad(audio, (0, config["fft_size"]), mode="edge")
audio = audio[: len(mel) * hop_size]
assert len(mel) * hop_size == len(audio)
# extract raw pitch
_f0, t = pw.dio(
audio.astype(np.double),
fs=sampling_rate,
f0_ceil=fmax,
frame_period=1000 * hop_size / sampling_rate,
)
f0 = pw.stonemask(audio.astype(np.double), _f0, t, sampling_rate)
if len(f0) >= len(mel):
f0 = f0[: len(mel)]
else:
f0 = np.pad(f0, (0, len(mel) - len(f0)))
# extract energy
energy = np.sqrt(np.sum(S ** 2, axis=0))
assert len(mel) == len(f0) == len(energy)
# remove outlier f0/energy
f0 = remove_outlier(f0)
energy = remove_outlier(energy)
# apply global gain
if config["global_gain_scale"] > 0.0:
audio *= config["global_gain_scale"]
if np.abs(audio).max() >= 1.0:
logging.warn(
f"{utt_id} causes clipping. It is better to reconsider global gain scale value."
)
item["audio"] = audio
item["mel"] = mel
item["f0"] = f0
item["energy"] = energy
return True, mel, energy, f0, item
def save_statistics_to_file(scaler_list, config):
"""Save computed statistics to disk.
Args:
scaler_list (List): List of scalers containing statistics to save.
config (Dict): configuration dictionary.
"""
for scaler, name in scaler_list:
stats = np.stack((scaler.mean_, scaler.scale_))
np.save(
os.path.join(config["outdir"], f"stats{name}.npy"),
stats.astype(np.float32),
allow_pickle=False,
)
def save_features_to_file(features, subdir, config):
"""Save transformed dataset features in disk.
Args:
features (Dict): dictionary containing the attributes to save.
subdir (str): data split folder where features will be saved.
config (Dict): configuration dictionary.
"""
utt_id = features["utt_id"]
if config["format"] == "npy":
save_list = [
(features["audio"], "wavs", "wave", np.float32),
(features["mel"], "raw-feats", "raw-feats", np.float32),
(features["text_ids"], "ids", "ids", np.int32),
(features["f0"], "raw-f0", "raw-f0", np.float32),
(features["energy"], "raw-energies", "raw-energy", np.float32),
]
for item, name_dir, name_file, fmt in save_list:
np.save(
os.path.join(
config["outdir"], subdir, name_dir, f"{utt_id}-{name_file}.npy"
),
item.astype(fmt),
allow_pickle=False,
)
else:
raise ValueError("'npy' is the only supported format.")
def preprocess():
"""Run preprocessing process and compute statistics for normalizing."""
config = parse_and_config()
dataset_processor = {
"ljspeech": LJSpeechProcessor,
"kss": KSSProcessor,
"libritts": LibriTTSProcessor,
"baker": BakerProcessor,
"thorsten": ThorstenProcessor,
"ljspeechu": LJSpeechUltimateProcessor,
"synpaflex": SynpaflexProcessor,
"jsut": JSUTProcessor,
}
dataset_symbol = {
"ljspeech": LJSPEECH_SYMBOLS,
"kss": KSS_SYMBOLS,
"libritts": LIBRITTS_SYMBOLS,
"baker": BAKER_SYMBOLS,
"thorsten": THORSTEN_SYMBOLS,
"ljspeechu": LJSPEECH_U_SYMBOLS,
"synpaflex": SYNPAFLEX_SYMBOLS,
"jsut": JSUT_SYMBOLS,
}
dataset_cleaner = {
"ljspeech": "english_cleaners",
"kss": "korean_cleaners",
"libritts": None,
"baker": None,
"thorsten": "german_cleaners",
"ljspeechu": "english_cleaners",
"synpaflex": "basic_cleaners",
"jsut": None,
}
logging.info(f"Selected '{config['dataset']}' processor.")
processor = dataset_processor[config["dataset"]](
config["rootdir"],
symbols=dataset_symbol[config["dataset"]],
cleaner_names=dataset_cleaner[config["dataset"]],
)
# check output directories
build_dir = lambda x: [
os.makedirs(os.path.join(config["outdir"], x, y), exist_ok=True)
for y in ["raw-feats", "wavs", "ids", "raw-f0", "raw-energies"]
]
build_dir("train")
build_dir("valid")
# save pretrained-processor to feature dir
processor._save_mapper(
os.path.join(config["outdir"], f"{config['dataset']}_mapper.json"),
extra_attrs_to_save={"pinyin_dict": processor.pinyin_dict}
if config["dataset"] == "baker"
else {},
)
# build train test split
if config["dataset"] == "libritts":
train_split, valid_split, _, _ = train_test_split(
processor.items,
[i[-1] for i in processor.items],
test_size=config["test_size"],
random_state=42,
shuffle=True,
)
else:
train_split, valid_split = train_test_split(
processor.items,
test_size=config["test_size"],
random_state=42,
shuffle=True,
)
logging.info(f"Training items: {len(train_split)}")
logging.info(f"Validation items: {len(valid_split)}")
get_utt_id = lambda x: os.path.split(x[1])[-1].split(".")[0]
train_utt_ids = [get_utt_id(x) for x in train_split]
valid_utt_ids = [get_utt_id(x) for x in valid_split]
# save train and valid utt_ids to track later
np.save(os.path.join(config["outdir"], "train_utt_ids.npy"), train_utt_ids)
np.save(os.path.join(config["outdir"], "valid_utt_ids.npy"), valid_utt_ids)
# define map iterator
def iterator_data(items_list):
for item in items_list:
yield processor.get_one_sample(item)
train_iterator_data = iterator_data(train_split)
valid_iterator_data = iterator_data(valid_split)
p = Pool(config["n_cpus"])
# preprocess train files and get statistics for normalizing
partial_fn = partial(gen_audio_features, config=config)
train_map = p.imap_unordered(
partial_fn,
tqdm(train_iterator_data, total=len(train_split), desc="[Preprocessing train]"),
chunksize=10,
)
# init scaler for multiple features
scaler_mel = StandardScaler(copy=False)
scaler_energy = StandardScaler(copy=False)
scaler_f0 = StandardScaler(copy=False)
id_to_remove = []
for result, mel, energy, f0, features in train_map:
if not result:
id_to_remove.append(features["utt_id"])
continue
save_features_to_file(features, "train", config)
# partial fitting of scalers
if len(energy[energy != 0]) == 0 or len(f0[f0 != 0]) == 0:
id_to_remove.append(features["utt_id"])
continue
# partial fitting of scalers
if len(energy[energy != 0]) == 0 or len(f0[f0 != 0]) == 0:
id_to_remove.append(features["utt_id"])
continue
scaler_mel.partial_fit(mel)
scaler_energy.partial_fit(energy[energy != 0].reshape(-1, 1))
scaler_f0.partial_fit(f0[f0 != 0].reshape(-1, 1))
if len(id_to_remove) > 0:
np.save(
os.path.join(config["outdir"], "train_utt_ids.npy"),
[i for i in train_utt_ids if i not in id_to_remove],
)
logging.info(
f"removed {len(id_to_remove)} cause of too many outliers or bad mfa extraction"
)
# save statistics to file
logging.info("Saving computed statistics.")
scaler_list = [(scaler_mel, ""), (scaler_energy, "_energy"), (scaler_f0, "_f0")]
save_statistics_to_file(scaler_list, config)
# preprocess valid files
partial_fn = partial(gen_audio_features, config=config)
valid_map = p.imap_unordered(
partial_fn,
tqdm(valid_iterator_data, total=len(valid_split), desc="[Preprocessing valid]"),
chunksize=10,
)
for *_, features in valid_map:
save_features_to_file(features, "valid", config)
def gen_normal_mel(mel_path, scaler, config):
"""Normalize the mel spectrogram and save it to the corresponding path.
Args:
mel_path (string): path of the mel spectrogram to normalize.
scaler (sklearn.base.BaseEstimator): scaling function to use for normalize.
config (Dict): configuration dictionary.
"""
mel = np.load(mel_path)
mel_norm = scaler.transform(mel)
path, file_name = os.path.split(mel_path)
*_, subdir, suffix = path.split(os.sep)
utt_id = file_name.split(f"-{suffix}.npy")[0]
np.save(
os.path.join(
config["outdir"], subdir, "norm-feats", f"{utt_id}-norm-feats.npy"
),
mel_norm.astype(np.float32),
allow_pickle=False,
)
def normalize():
"""Normalize mel spectrogram with pre-computed statistics."""
config = parse_and_config()
if config["format"] == "npy":
# init scaler with saved values
scaler = StandardScaler()
scaler.mean_, scaler.scale_ = np.load(
os.path.join(config["outdir"], "stats.npy")
)
scaler.n_features_in_ = config["num_mels"]
else:
raise ValueError("'npy' is the only supported format.")
# find all "raw-feats" files in both train and valid folders
glob_path = os.path.join(config["rootdir"], "**", "raw-feats", "*.npy")
mel_raw_feats = glob.glob(glob_path, recursive=True)
logging.info(f"Files to normalize: {len(mel_raw_feats)}")
# check for output directories
os.makedirs(os.path.join(config["outdir"], "train", "norm-feats"), exist_ok=True)
os.makedirs(os.path.join(config["outdir"], "valid", "norm-feats"), exist_ok=True)
p = Pool(config["n_cpus"])
partial_fn = partial(gen_normal_mel, scaler=scaler, config=config)
list(p.map(partial_fn, tqdm(mel_raw_feats, desc="[Normalizing]")))
def compute_statistics():
"""Compute mean / std statistics of some features for later normalization."""
config = parse_and_config()
# find features files for the train split
glob_fn = lambda x: glob.glob(os.path.join(config["rootdir"], "train", x, "*.npy"))
glob_mel = glob_fn("raw-feats")
glob_f0 = glob_fn("raw-f0")
glob_energy = glob_fn("raw-energies")
assert (
len(glob_mel) == len(glob_f0) == len(glob_energy)
), "Features, f0 and energies have different files in training split."
logging.info(f"Computing statistics for {len(glob_mel)} files.")
# init scaler for multiple features
scaler_mel = StandardScaler(copy=False)
scaler_energy = StandardScaler(copy=False)
scaler_f0 = StandardScaler(copy=False)
for mel, f0, energy in tqdm(
zip(glob_mel, glob_f0, glob_energy), total=len(glob_mel)
):
# remove outliers
energy = np.load(energy)
f0 = np.load(f0)
# partial fitting of scalers
scaler_mel.partial_fit(np.load(mel))
scaler_energy.partial_fit(energy[energy != 0].reshape(-1, 1))
scaler_f0.partial_fit(f0[f0 != 0].reshape(-1, 1))
# save statistics to file
logging.info("Saving computed statistics.")
scaler_list = [(scaler_mel, ""), (scaler_energy, "_energy"), (scaler_f0, "_f0")]
save_statistics_to_file(scaler_list, config)
if __name__ == "__main__":
preprocess()
|