File size: 6,082 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FastSpeech Config object."""

import collections

from tensorflow_tts.configs import BaseConfig
from tensorflow_tts.processor.ljspeech import LJSPEECH_SYMBOLS as lj_symbols
from tensorflow_tts.processor.kss import KSS_SYMBOLS as kss_symbols
from tensorflow_tts.processor.baker import BAKER_SYMBOLS as bk_symbols
from tensorflow_tts.processor.libritts import LIBRITTS_SYMBOLS as lbri_symbols
from tensorflow_tts.processor.jsut import JSUT_SYMBOLS as jsut_symbols


SelfAttentionParams = collections.namedtuple(
    "SelfAttentionParams",
    [
        "n_speakers",
        "hidden_size",
        "num_hidden_layers",
        "num_attention_heads",
        "attention_head_size",
        "intermediate_size",
        "intermediate_kernel_size",
        "hidden_act",
        "output_attentions",
        "output_hidden_states",
        "initializer_range",
        "hidden_dropout_prob",
        "attention_probs_dropout_prob",
        "layer_norm_eps",
        "max_position_embeddings",
    ],
)


class FastSpeechConfig(BaseConfig):
    """Initialize FastSpeech Config."""

    def __init__(
        self,
        dataset="ljspeech",
        vocab_size=len(lj_symbols),
        n_speakers=1,
        encoder_hidden_size=384,
        encoder_num_hidden_layers=4,
        encoder_num_attention_heads=2,
        encoder_attention_head_size=192,
        encoder_intermediate_size=1024,
        encoder_intermediate_kernel_size=3,
        encoder_hidden_act="mish",
        decoder_hidden_size=384,
        decoder_num_hidden_layers=4,
        decoder_num_attention_heads=2,
        decoder_attention_head_size=192,
        decoder_intermediate_size=1024,
        decoder_intermediate_kernel_size=3,
        decoder_hidden_act="mish",
        output_attentions=True,
        output_hidden_states=True,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        max_position_embeddings=2048,
        num_duration_conv_layers=2,
        duration_predictor_filters=256,
        duration_predictor_kernel_sizes=3,
        num_mels=80,
        duration_predictor_dropout_probs=0.1,
        n_conv_postnet=5,
        postnet_conv_filters=512,
        postnet_conv_kernel_sizes=5,
        postnet_dropout_rate=0.1,
        **kwargs
    ):
        """Init parameters for Fastspeech model."""
        # encoder params
        if dataset == "ljspeech":
            self.vocab_size = vocab_size
        elif dataset == "kss":
            self.vocab_size = len(kss_symbols)
        elif dataset == "baker":
            self.vocab_size = len(bk_symbols)
        elif dataset == "libritts":
            self.vocab_size = len(lbri_symbols)
        elif dataset == "jsut":
            self.vocab_size = len(jsut_symbols)
        else:
            raise ValueError("No such dataset: {}".format(dataset))
        self.initializer_range = initializer_range
        self.max_position_embeddings = max_position_embeddings
        self.n_speakers = n_speakers
        self.layer_norm_eps = layer_norm_eps

        # encoder params
        self.encoder_self_attention_params = SelfAttentionParams(
            n_speakers=n_speakers,
            hidden_size=encoder_hidden_size,
            num_hidden_layers=encoder_num_hidden_layers,
            num_attention_heads=encoder_num_attention_heads,
            attention_head_size=encoder_attention_head_size,
            hidden_act=encoder_hidden_act,
            intermediate_size=encoder_intermediate_size,
            intermediate_kernel_size=encoder_intermediate_kernel_size,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            initializer_range=initializer_range,
            hidden_dropout_prob=hidden_dropout_prob,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            layer_norm_eps=layer_norm_eps,
            max_position_embeddings=max_position_embeddings,
        )

        # decoder params
        self.decoder_self_attention_params = SelfAttentionParams(
            n_speakers=n_speakers,
            hidden_size=decoder_hidden_size,
            num_hidden_layers=decoder_num_hidden_layers,
            num_attention_heads=decoder_num_attention_heads,
            attention_head_size=decoder_attention_head_size,
            hidden_act=decoder_hidden_act,
            intermediate_size=decoder_intermediate_size,
            intermediate_kernel_size=decoder_intermediate_kernel_size,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            initializer_range=initializer_range,
            hidden_dropout_prob=hidden_dropout_prob,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            layer_norm_eps=layer_norm_eps,
            max_position_embeddings=max_position_embeddings,
        )

        self.duration_predictor_dropout_probs = duration_predictor_dropout_probs
        self.num_duration_conv_layers = num_duration_conv_layers
        self.duration_predictor_filters = duration_predictor_filters
        self.duration_predictor_kernel_sizes = duration_predictor_kernel_sizes
        self.num_mels = num_mels

        # postnet
        self.n_conv_postnet = n_conv_postnet
        self.postnet_conv_filters = postnet_conv_filters
        self.postnet_conv_kernel_sizes = postnet_conv_kernel_sizes
        self.postnet_dropout_rate = postnet_dropout_rate