File size: 3,279 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MelGAN Config object."""


from tensorflow_tts.configs import BaseConfig


class MelGANGeneratorConfig(BaseConfig):
    """Initialize MelGAN Generator Config."""

    def __init__(
        self,
        out_channels=1,
        kernel_size=7,
        filters=512,
        use_bias=True,
        upsample_scales=[8, 8, 2, 2],
        stack_kernel_size=3,
        stacks=3,
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"alpha": 0.2},
        padding_type="REFLECT",
        use_final_nolinear_activation=True,
        is_weight_norm=True,
        initializer_seed=42,
        **kwargs
    ):
        """Init parameters for MelGAN Generator model."""
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.filters = filters
        self.use_bias = use_bias
        self.upsample_scales = upsample_scales
        self.stack_kernel_size = stack_kernel_size
        self.stacks = stacks
        self.nonlinear_activation = nonlinear_activation
        self.nonlinear_activation_params = nonlinear_activation_params
        self.padding_type = padding_type
        self.use_final_nolinear_activation = use_final_nolinear_activation
        self.is_weight_norm = is_weight_norm
        self.initializer_seed = initializer_seed


class MelGANDiscriminatorConfig(object):
    """Initialize MelGAN Discriminator Config."""

    def __init__(
        self,
        out_channels=1,
        scales=3,
        downsample_pooling="AveragePooling1D",
        downsample_pooling_params={"pool_size": 4, "strides": 2,},
        kernel_sizes=[5, 3],
        filters=16,
        max_downsample_filters=1024,
        use_bias=True,
        downsample_scales=[4, 4, 4, 4],
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"alpha": 0.2},
        padding_type="REFLECT",
        is_weight_norm=True,
        initializer_seed=42,
        **kwargs
    ):
        """Init parameters for MelGAN Discriminator model."""
        self.out_channels = out_channels
        self.scales = scales
        self.downsample_pooling = downsample_pooling
        self.downsample_pooling_params = downsample_pooling_params
        self.kernel_sizes = kernel_sizes
        self.filters = filters
        self.max_downsample_filters = max_downsample_filters
        self.use_bias = use_bias
        self.downsample_scales = downsample_scales
        self.nonlinear_activation = nonlinear_activation
        self.nonlinear_activation_params = nonlinear_activation_params
        self.padding_type = padding_type
        self.is_weight_norm = is_weight_norm
        self.initializer_seed = initializer_seed