File size: 3,111 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding: utf-8 -*-
# Copyright 2020 The TensorFlowTTS Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow Auto Processor modules."""

import logging
import json
import os
from collections import OrderedDict

from tensorflow_tts.processor import (
    LJSpeechProcessor,
    KSSProcessor,
    BakerProcessor,
    LibriTTSProcessor,
    ThorstenProcessor,
    LJSpeechUltimateProcessor,
    SynpaflexProcessor,
    JSUTProcessor,
)

from tensorflow_tts.utils import CACHE_DIRECTORY, PROCESSOR_FILE_NAME, LIBRARY_NAME
from tensorflow_tts import __version__ as VERSION
from huggingface_hub import hf_hub_url, cached_download

CONFIG_MAPPING = OrderedDict(
    [
        ("LJSpeechProcessor", LJSpeechProcessor),
        ("KSSProcessor", KSSProcessor),
        ("BakerProcessor", BakerProcessor),
        ("LibriTTSProcessor", LibriTTSProcessor),
        ("ThorstenProcessor", ThorstenProcessor),
        ("LJSpeechUltimateProcessor", LJSpeechUltimateProcessor),
        ("SynpaflexProcessor", SynpaflexProcessor),
        ("JSUTProcessor", JSUTProcessor),
    ]
)


class AutoProcessor:
    def __init__(self):
        raise EnvironmentError(
            "AutoProcessor is designed to be instantiated "
            "using the `AutoProcessor.from_pretrained(pretrained_path)` method."
        )

    @classmethod
    def from_pretrained(cls, pretrained_path, **kwargs):
        # load weights from hf hub
        if not os.path.isfile(pretrained_path):
            # retrieve correct hub url
            download_url = hf_hub_url(repo_id=pretrained_path, filename=PROCESSOR_FILE_NAME)

            pretrained_path = str(
                cached_download(
                    url=download_url,
                    library_name=LIBRARY_NAME,
                    library_version=VERSION,
                    cache_dir=CACHE_DIRECTORY,
                )
            )
        with open(pretrained_path, "r") as f:
            config = json.load(f)

        try:
            processor_name = config["processor_name"]
            processor_class = CONFIG_MAPPING[processor_name]
            processor_class = processor_class(
                data_dir=None, loaded_mapper_path=pretrained_path
            )
            return processor_class
        except Exception:
            raise ValueError(
                "Unrecognized processor in {}. "
                "Should have a `processor_name` key in its config.json, or contain one of the following strings "
                "in its name: {}".format(
                    pretrained_path, ", ".join(CONFIG_MAPPING.keys())
                )
            )