File size: 6,890 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
# Copyright 2020 The Multi-band MelGAN Authors , Minh Nguyen (@dathudeptrai) and Tomoki Hayashi (@kan-bayashi)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#
# Compatible with https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/parallel_wavegan/layers/pqmf.py.
"""Multi-band MelGAN Modules."""

import numpy as np
import tensorflow as tf
from scipy.signal import kaiser

from tensorflow_tts.models import BaseModel
from tensorflow_tts.models import TFMelGANGenerator


def design_prototype_filter(taps=62, cutoff_ratio=0.15, beta=9.0):
    """Design prototype filter for PQMF.
    This method is based on `A Kaiser window approach for the design of prototype
    filters of cosine modulated filterbanks`_.
    Args:
        taps (int): The number of filter taps.
        cutoff_ratio (float): Cut-off frequency ratio.
        beta (float): Beta coefficient for kaiser window.
    Returns:
        ndarray: Impluse response of prototype filter (taps + 1,).
    .. _`A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks`:
        https://ieeexplore.ieee.org/abstract/document/681427
    """
    # check the arguments are valid
    assert taps % 2 == 0, "The number of taps mush be even number."
    assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."

    # make initial filter
    omega_c = np.pi * cutoff_ratio
    with np.errstate(invalid="ignore"):
        h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (
            np.pi * (np.arange(taps + 1) - 0.5 * taps)
        )
    # fix nan due to indeterminate form
    h_i[taps // 2] = np.cos(0) * cutoff_ratio

    # apply kaiser window
    w = kaiser(taps + 1, beta)
    h = h_i * w

    return h


class TFPQMF(tf.keras.layers.Layer):
    """PQMF module."""

    def __init__(self, config, **kwargs):
        """Initilize PQMF module.
        Args:
            config (class): MultiBandMelGANGeneratorConfig
        """
        super().__init__(**kwargs)
        subbands = config.subbands
        taps = config.taps
        cutoff_ratio = config.cutoff_ratio
        beta = config.beta

        # define filter coefficient
        h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
        h_analysis = np.zeros((subbands, len(h_proto)))
        h_synthesis = np.zeros((subbands, len(h_proto)))
        for k in range(subbands):
            h_analysis[k] = (
                2
                * h_proto
                * np.cos(
                    (2 * k + 1)
                    * (np.pi / (2 * subbands))
                    * (np.arange(taps + 1) - (taps / 2))
                    + (-1) ** k * np.pi / 4
                )
            )
            h_synthesis[k] = (
                2
                * h_proto
                * np.cos(
                    (2 * k + 1)
                    * (np.pi / (2 * subbands))
                    * (np.arange(taps + 1) - (taps / 2))
                    - (-1) ** k * np.pi / 4
                )
            )

        # [subbands, 1, taps + 1] == [filter_width, in_channels, out_channels]
        analysis_filter = np.expand_dims(h_analysis, 1)
        analysis_filter = np.transpose(analysis_filter, (2, 1, 0))

        synthesis_filter = np.expand_dims(h_synthesis, 0)
        synthesis_filter = np.transpose(synthesis_filter, (2, 1, 0))

        # filter for downsampling & upsampling
        updown_filter = np.zeros((subbands, subbands, subbands), dtype=np.float32)
        for k in range(subbands):
            updown_filter[0, k, k] = 1.0

        self.subbands = subbands
        self.taps = taps
        self.analysis_filter = analysis_filter.astype(np.float32)
        self.synthesis_filter = synthesis_filter.astype(np.float32)
        self.updown_filter = updown_filter.astype(np.float32)

    @tf.function(
        experimental_relax_shapes=True,
        input_signature=[tf.TensorSpec(shape=[None, None, 1], dtype=tf.float32)],
    )
    def analysis(self, x):
        """Analysis with PQMF.
        Args:
            x (Tensor): Input tensor (B, T, 1).
        Returns:
            Tensor: Output tensor (B, T // subbands, subbands).
        """
        x = tf.pad(x, [[0, 0], [self.taps // 2, self.taps // 2], [0, 0]])
        x = tf.nn.conv1d(x, self.analysis_filter, stride=1, padding="VALID")
        x = tf.nn.conv1d(x, self.updown_filter, stride=self.subbands, padding="VALID")
        return x

    @tf.function(
        experimental_relax_shapes=True,
        input_signature=[tf.TensorSpec(shape=[None, None, None], dtype=tf.float32)],
    )
    def synthesis(self, x):
        """Synthesis with PQMF.
        Args:
            x (Tensor): Input tensor (B, T // subbands, subbands).
        Returns:
            Tensor: Output tensor (B, T, 1).
        """
        x = tf.nn.conv1d_transpose(
            x,
            self.updown_filter * self.subbands,
            strides=self.subbands,
            output_shape=(
                tf.shape(x)[0],
                tf.shape(x)[1] * self.subbands,
                self.subbands,
            ),
        )
        x = tf.pad(x, [[0, 0], [self.taps // 2, self.taps // 2], [0, 0]])
        return tf.nn.conv1d(x, self.synthesis_filter, stride=1, padding="VALID")


class TFMBMelGANGenerator(TFMelGANGenerator):
    """Tensorflow MBMelGAN generator module."""

    def __init__(self, config, **kwargs):
        super().__init__(config, **kwargs)
        self.pqmf = TFPQMF(config=config, dtype=tf.float32, name="pqmf")

    def call(self, mels, **kwargs):
        """Calculate forward propagation.
        Args:
            c (Tensor): Input tensor (B, T, channels)
        Returns:
            Tensor: Output tensor (B, T ** prod(upsample_scales), out_channels)
        """
        return self.inference(mels)

    @tf.function(
        input_signature=[
            tf.TensorSpec(shape=[None, None, 80], dtype=tf.float32, name="mels")
        ]
    )
    def inference(self, mels):
        mb_audios = self.melgan(mels)
        return self.pqmf.synthesis(mb_audios)

    @tf.function(
        input_signature=[
            tf.TensorSpec(shape=[1, None, 80], dtype=tf.float32, name="mels")
        ]
    )
    def inference_tflite(self, mels):
        mb_audios = self.melgan(mels)
        return self.pqmf.synthesis(mb_audios)