File size: 23,944 Bytes
d5ee97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# -*- coding: utf-8 -*-
# This code is copy from https://github.com/tensorflow/tensorflow/pull/36773.
"""Group Convolution Modules."""

from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import activations, constraints, initializers, regularizers
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.keras.layers import Conv1D, SeparableConv1D
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.ops import array_ops, nn, nn_ops


class Convolution(object):
    """Helper class for convolution.
    Note that this class assumes that shapes of input and filter passed to
    __call__ are compatible with input_shape and filter_shape passed to the
    constructor.
    Arguments
      input_shape: static shape of input. i.e. input.get_shape().
      filter_shape: static shape of the filter. i.e. filter.get_shape().
      padding:  see convolution.
      strides: see convolution.
      dilation_rate: see convolution.
      name: see convolution.
      data_format: see convolution.
    """

    def __init__(
        self,
        input_shape,
        filter_shape,
        padding,
        strides=None,
        dilation_rate=None,
        name=None,
        data_format=None,
    ):
        """Helper function for convolution."""
        num_total_dims = filter_shape.ndims
        if num_total_dims is None:
            num_total_dims = input_shape.ndims
        if num_total_dims is None:
            raise ValueError("rank of input or filter must be known")

        num_spatial_dims = num_total_dims - 2

        try:
            input_shape.with_rank(num_spatial_dims + 2)
        except ValueError:
            raise ValueError("input tensor must have rank %d" % (num_spatial_dims + 2))

        try:
            filter_shape.with_rank(num_spatial_dims + 2)
        except ValueError:
            raise ValueError("filter tensor must have rank %d" % (num_spatial_dims + 2))

        if data_format is None or not data_format.startswith("NC"):
            input_channels_dim = tensor_shape.dimension_at_index(
                input_shape, num_spatial_dims + 1
            )
            spatial_dims = range(1, num_spatial_dims + 1)
        else:
            input_channels_dim = tensor_shape.dimension_at_index(input_shape, 1)
            spatial_dims = range(2, num_spatial_dims + 2)

        filter_dim = tensor_shape.dimension_at_index(filter_shape, num_spatial_dims)
        if not (input_channels_dim % filter_dim).is_compatible_with(0):
            raise ValueError(
                "number of input channels is not divisible by corresponding "
                "dimension of filter, {} % {} != 0".format(
                    input_channels_dim, filter_dim
                )
            )

        strides, dilation_rate = nn_ops._get_strides_and_dilation_rate(
            num_spatial_dims, strides, dilation_rate
        )

        self.input_shape = input_shape
        self.filter_shape = filter_shape
        self.data_format = data_format
        self.strides = strides
        self.padding = padding
        self.name = name
        self.dilation_rate = dilation_rate
        self.conv_op = nn_ops._WithSpaceToBatch(
            input_shape,
            dilation_rate=dilation_rate,
            padding=padding,
            build_op=self._build_op,
            filter_shape=filter_shape,
            spatial_dims=spatial_dims,
            data_format=data_format,
        )

    def _build_op(self, _, padding):
        return nn_ops._NonAtrousConvolution(
            self.input_shape,
            filter_shape=self.filter_shape,
            padding=padding,
            data_format=self.data_format,
            strides=self.strides,
            name=self.name,
        )

    def __call__(self, inp, filter):
        return self.conv_op(inp, filter)


class Conv(Layer):
    """Abstract N-D convolution layer (private, used as implementation base).
    This layer creates a convolution kernel that is convolved
    (actually cross-correlated) with the layer input to produce a tensor of
    outputs. If `use_bias` is True (and a `bias_initializer` is provided),
    a bias vector is created and added to the outputs. Finally, if
    `activation` is not `None`, it is applied to the outputs as well.
    Note: layer attributes cannot be modified after the layer has been called
    once (except the `trainable` attribute).
    Arguments:
      rank: An integer, the rank of the convolution, e.g. "2" for 2D convolution.
      filters: Integer, the dimensionality of the output space (i.e. the number
        of filters in the convolution).
      kernel_size: An integer or tuple/list of n integers, specifying the
        length of the convolution window.
      strides: An integer or tuple/list of n integers,
        specifying the stride length of the convolution.
        Specifying any stride value != 1 is incompatible with specifying
        any `dilation_rate` value != 1.
      padding: One of `"valid"`,  `"same"`, or `"causal"` (case-insensitive).
      data_format: A string, one of `channels_last` (default) or `channels_first`.
        The ordering of the dimensions in the inputs.
        `channels_last` corresponds to inputs with shape
        `(batch_size, ..., channels)` while `channels_first` corresponds to
        inputs with shape `(batch_size, channels, ...)`.
      dilation_rate: An integer or tuple/list of n integers, specifying
        the dilation rate to use for dilated convolution.
        Currently, specifying any `dilation_rate` value != 1 is
        incompatible with specifying any `strides` value != 1.
      groups: Integer, the number of channel groups controlling the connections
        between inputs and outputs. Input channels and `filters` must both be
        divisible by `groups`. For example,
          - At `groups=1`, all inputs are convolved to all outputs.
          - At `groups=2`, the operation becomes equivalent to having two
            convolutional layers side by side, each seeing half the input
            channels, and producing half the output channels, and both
            subsequently concatenated.
          - At `groups=input_channels`, each input channel is convolved with its
            own set of filters, of size `input_channels / filters`
      activation: Activation function to use.
        If you don't specify anything, no activation is applied.
      use_bias: Boolean, whether the layer uses a bias.
      kernel_initializer: An initializer for the convolution kernel.
      bias_initializer: An initializer for the bias vector. If None, the default
        initializer will be used.
      kernel_regularizer: Optional regularizer for the convolution kernel.
      bias_regularizer: Optional regularizer for the bias vector.
      activity_regularizer: Optional regularizer function for the output.
      kernel_constraint: Optional projection function to be applied to the
          kernel after being updated by an `Optimizer` (e.g. used to implement
          norm constraints or value constraints for layer weights). The function
          must take as input the unprojected variable and must return the
          projected variable (which must have the same shape). Constraints are
          not safe to use when doing asynchronous distributed training.
      bias_constraint: Optional projection function to be applied to the
          bias after being updated by an `Optimizer`.
      trainable: Boolean, if `True` the weights of this layer will be marked as
        trainable (and listed in `layer.trainable_weights`).
      name: A string, the name of the layer.
    """

    def __init__(
        self,
        rank,
        filters,
        kernel_size,
        strides=1,
        padding="valid",
        data_format=None,
        dilation_rate=1,
        groups=1,
        activation=None,
        use_bias=True,
        kernel_initializer="glorot_uniform",
        bias_initializer="zeros",
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        kernel_constraint=None,
        bias_constraint=None,
        trainable=True,
        name=None,
        **kwargs
    ):
        super(Conv, self).__init__(
            trainable=trainable,
            name=name,
            activity_regularizer=regularizers.get(activity_regularizer),
            **kwargs
        )
        self.rank = rank
        if filters is not None and not isinstance(filters, int):
            filters = int(filters)
        self.filters = filters
        self.groups = groups or 1
        if filters is not None and filters % self.groups != 0:
            raise ValueError(
                "The number of filters must be evenly divisible by the number of "
                "groups. Received: groups={}, filters={}".format(groups, filters)
            )
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, "kernel_size")
        if not all(self.kernel_size):
            raise ValueError(
                "The argument `kernel_size` cannot contain 0(s). "
                "Received: %s" % (kernel_size,)
            )
        self.strides = conv_utils.normalize_tuple(strides, rank, "strides")
        self.padding = conv_utils.normalize_padding(padding)
        if self.padding == "causal" and not isinstance(self, (Conv1D, SeparableConv1D)):
            raise ValueError(
                "Causal padding is only supported for `Conv1D`"
                "and ``SeparableConv1D`."
            )
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, "dilation_rate"
        )
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(ndim=self.rank + 2)

    def build(self, input_shape):
        input_shape = tensor_shape.TensorShape(input_shape)
        input_channel = self._get_input_channel(input_shape)
        if input_channel % self.groups != 0:
            raise ValueError(
                "The number of input channels must be evenly divisible by the number "
                "of groups. Received groups={}, but the input has {} channels "
                "(full input shape is {}).".format(
                    self.groups, input_channel, input_shape
                )
            )
        kernel_shape = self.kernel_size + (input_channel // self.groups, self.filters)

        self.kernel = self.add_weight(
            name="kernel",
            shape=kernel_shape,
            initializer=self.kernel_initializer,
            regularizer=self.kernel_regularizer,
            constraint=self.kernel_constraint,
            trainable=True,
            dtype=self.dtype,
        )
        if self.use_bias:
            self.bias = self.add_weight(
                name="bias",
                shape=(self.filters,),
                initializer=self.bias_initializer,
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint,
                trainable=True,
                dtype=self.dtype,
            )
        else:
            self.bias = None
        channel_axis = self._get_channel_axis()
        self.input_spec = InputSpec(
            ndim=self.rank + 2, axes={channel_axis: input_channel}
        )

        self._build_conv_op_input_shape = input_shape
        self._build_input_channel = input_channel
        self._padding_op = self._get_padding_op()
        self._conv_op_data_format = conv_utils.convert_data_format(
            self.data_format, self.rank + 2
        )
        self._convolution_op = Convolution(
            input_shape,
            filter_shape=self.kernel.shape,
            dilation_rate=self.dilation_rate,
            strides=self.strides,
            padding=self._padding_op,
            data_format=self._conv_op_data_format,
        )
        self.built = True

    def call(self, inputs):
        if self._recreate_conv_op(inputs):
            self._convolution_op = Convolution(
                inputs.get_shape(),
                filter_shape=self.kernel.shape,
                dilation_rate=self.dilation_rate,
                strides=self.strides,
                padding=self._padding_op,
                data_format=self._conv_op_data_format,
            )
            self._build_conv_op_input_shape = inputs.get_shape()

        # Apply causal padding to inputs for Conv1D.
        if self.padding == "causal" and self.__class__.__name__ == "Conv1D":
            inputs = array_ops.pad(inputs, self._compute_causal_padding())

        outputs = self._convolution_op(inputs, self.kernel)

        if self.use_bias:
            if self.data_format == "channels_first":
                if self.rank == 1:
                    # nn.bias_add does not accept a 1D input tensor.
                    bias = array_ops.reshape(self.bias, (1, self.filters, 1))
                    outputs += bias
                else:
                    outputs = nn.bias_add(outputs, self.bias, data_format="NCHW")
            else:
                outputs = nn.bias_add(outputs, self.bias, data_format="NHWC")

        if self.activation is not None:
            return self.activation(outputs)
        return outputs

    def compute_output_shape(self, input_shape):
        input_shape = tensor_shape.TensorShape(input_shape).as_list()
        if self.data_format == "channels_last":
            space = input_shape[1:-1]
            new_space = []
            for i in range(len(space)):
                new_dim = conv_utils.conv_output_length(
                    space[i],
                    self.kernel_size[i],
                    padding=self.padding,
                    stride=self.strides[i],
                    dilation=self.dilation_rate[i],
                )
                new_space.append(new_dim)
            return tensor_shape.TensorShape(
                [input_shape[0]] + new_space + [self.filters]
            )
        else:
            space = input_shape[2:]
            new_space = []
            for i in range(len(space)):
                new_dim = conv_utils.conv_output_length(
                    space[i],
                    self.kernel_size[i],
                    padding=self.padding,
                    stride=self.strides[i],
                    dilation=self.dilation_rate[i],
                )
                new_space.append(new_dim)
            return tensor_shape.TensorShape([input_shape[0], self.filters] + new_space)

    def get_config(self):
        config = {
            "filters": self.filters,
            "kernel_size": self.kernel_size,
            "strides": self.strides,
            "padding": self.padding,
            "data_format": self.data_format,
            "dilation_rate": self.dilation_rate,
            "groups": self.groups,
            "activation": activations.serialize(self.activation),
            "use_bias": self.use_bias,
            "kernel_initializer": initializers.serialize(self.kernel_initializer),
            "bias_initializer": initializers.serialize(self.bias_initializer),
            "kernel_regularizer": regularizers.serialize(self.kernel_regularizer),
            "bias_regularizer": regularizers.serialize(self.bias_regularizer),
            "activity_regularizer": regularizers.serialize(self.activity_regularizer),
            "kernel_constraint": constraints.serialize(self.kernel_constraint),
            "bias_constraint": constraints.serialize(self.bias_constraint),
        }
        base_config = super(Conv, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

    def _compute_causal_padding(self):
        """Calculates padding for 'causal' option for 1-d conv layers."""
        left_pad = self.dilation_rate[0] * (self.kernel_size[0] - 1)
        if self.data_format == "channels_last":
            causal_padding = [[0, 0], [left_pad, 0], [0, 0]]
        else:
            causal_padding = [[0, 0], [0, 0], [left_pad, 0]]
        return causal_padding

    def _get_channel_axis(self):
        if self.data_format == "channels_first":
            return 1
        else:
            return -1

    def _get_input_channel(self, input_shape):
        channel_axis = self._get_channel_axis()
        if input_shape.dims[channel_axis].value is None:
            raise ValueError(
                "The channel dimension of the inputs "
                "should be defined. Found `None`."
            )
        return int(input_shape[channel_axis])

    def _get_padding_op(self):
        if self.padding == "causal":
            op_padding = "valid"
        else:
            op_padding = self.padding
        if not isinstance(op_padding, (list, tuple)):
            op_padding = op_padding.upper()
        return op_padding

    def _recreate_conv_op(self, inputs):
        """Recreate conv_op if necessary.
        Check if the input_shape in call() is different from that in build().
        For the values that are not None, if they are different, recreate
        the _convolution_op to avoid the stateful behavior.
        Args:
          inputs: The input data to call() method.
        Returns:
          `True` or `False` to indicate whether to recreate the conv_op.
        """
        call_input_shape = inputs.get_shape()
        for axis in range(1, len(call_input_shape)):
            if (
                call_input_shape[axis] is not None
                and self._build_conv_op_input_shape[axis] is not None
                and call_input_shape[axis] != self._build_conv_op_input_shape[axis]
            ):
                return True
        return False


class GroupConv1D(Conv):
    """1D convolution layer (e.g. temporal convolution).
    This layer creates a convolution kernel that is convolved
    with the layer input over a single spatial (or temporal) dimension
    to produce a tensor of outputs.
    If `use_bias` is True, a bias vector is created and added to the outputs.
    Finally, if `activation` is not `None`,
    it is applied to the outputs as well.
    When using this layer as the first layer in a model,
    provide an `input_shape` argument
    (tuple of integers or `None`, e.g.
    `(10, 128)` for sequences of 10 vectors of 128-dimensional vectors,
    or `(None, 128)` for variable-length sequences of 128-dimensional vectors.
    Examples:
    >>> # The inputs are 128-length vectors with 10 timesteps, and the batch size
    >>> # is 4.
    >>> input_shape = (4, 10, 128)
    >>> x = tf.random.normal(input_shape)
    >>> y = tf.keras.layers.Conv1D(
    ... 32, 3, activation='relu',input_shape=input_shape)(x)
    >>> print(y.shape)
    (4, 8, 32)
    Arguments:
      filters: Integer, the dimensionality of the output space
        (i.e. the number of output filters in the convolution).
      kernel_size: An integer or tuple/list of a single integer,
        specifying the length of the 1D convolution window.
      strides: An integer or tuple/list of a single integer,
        specifying the stride length of the convolution.
        Specifying any stride value != 1 is incompatible with specifying
        any `dilation_rate` value != 1.
      padding: One of `"valid"`, `"causal"` or `"same"` (case-insensitive).
        `"causal"` results in causal (dilated) convolutions, e.g. `output[t]`
        does not depend on `input[t+1:]`. Useful when modeling temporal data
        where the model should not violate the temporal order.
        See [WaveNet: A Generative Model for Raw Audio, section
          2.1](https://arxiv.org/abs/1609.03499).
      data_format: A string,
        one of `channels_last` (default) or `channels_first`.
      groups: Integer, the number of channel groups controlling the connections
        between inputs and outputs. Input channels and `filters` must both be
        divisible by `groups`. For example,
          - At `groups=1`, all inputs are convolved to all outputs.
          - At `groups=2`, the operation becomes equivalent to having two
            convolutional layers side by side, each seeing half the input
            channels, and producing half the output channels, and both
            subsequently concatenated.
          - At `groups=input_channels`, each input channel is convolved with its
            own set of filters, of size `input_channels / filters`
      dilation_rate: an integer or tuple/list of a single integer, specifying
        the dilation rate to use for dilated convolution.
        Currently, specifying any `dilation_rate` value != 1 is
        incompatible with specifying any `strides` value != 1.
      activation: Activation function to use.
        If you don't specify anything, no activation is applied (
        see `keras.activations`).
      use_bias: Boolean, whether the layer uses a bias vector.
      kernel_initializer: Initializer for the `kernel` weights matrix (
        see `keras.initializers`).
      bias_initializer: Initializer for the bias vector (
        see `keras.initializers`).
      kernel_regularizer: Regularizer function applied to
        the `kernel` weights matrix (see `keras.regularizers`).
      bias_regularizer: Regularizer function applied to the bias vector (
        see `keras.regularizers`).
      activity_regularizer: Regularizer function applied to
        the output of the layer (its "activation") (
        see `keras.regularizers`).
      kernel_constraint: Constraint function applied to the kernel matrix (
        see `keras.constraints`).
      bias_constraint: Constraint function applied to the bias vector (
        see `keras.constraints`).
    Input shape:
      3D tensor with shape: `(batch_size, steps, input_dim)`
    Output shape:
      3D tensor with shape: `(batch_size, new_steps, filters)`
        `steps` value might have changed due to padding or strides.
    Returns:
      A tensor of rank 3 representing
      `activation(conv1d(inputs, kernel) + bias)`.
    Raises:
      ValueError: when both `strides` > 1 and `dilation_rate` > 1.
    """

    def __init__(
        self,
        filters,
        kernel_size,
        strides=1,
        padding="valid",
        data_format="channels_last",
        dilation_rate=1,
        groups=1,
        activation=None,
        use_bias=True,
        kernel_initializer="glorot_uniform",
        bias_initializer="zeros",
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        kernel_constraint=None,
        bias_constraint=None,
        **kwargs
    ):
        super().__init__(
            rank=1,
            filters=filters,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            dilation_rate=dilation_rate,
            groups=groups,
            activation=activations.get(activation),
            use_bias=use_bias,
            kernel_initializer=initializers.get(kernel_initializer),
            bias_initializer=initializers.get(bias_initializer),
            kernel_regularizer=regularizers.get(kernel_regularizer),
            bias_regularizer=regularizers.get(bias_regularizer),
            activity_regularizer=regularizers.get(activity_regularizer),
            kernel_constraint=constraints.get(kernel_constraint),
            bias_constraint=constraints.get(bias_constraint),
            **kwargs
        )