vishred18's picture
Upload 364 files
d5ee97c
raw
history blame
34 kB
# -*- coding: utf-8 -*-
# Copyright 2020 The FastSpeech Authors, The HuggingFace Inc. team and Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow Model modules for FastSpeech."""
import numpy as np
import tensorflow as tf
from tensorflow_tts.models import BaseModel
def get_initializer(initializer_range=0.02):
"""Creates a `tf.initializers.truncated_normal` with the given range.
Args:
initializer_range: float, initializer range for stddev.
Returns:
TruncatedNormal initializer with stddev = `initializer_range`.
"""
return tf.keras.initializers.TruncatedNormal(stddev=initializer_range)
def gelu(x):
"""Gaussian Error Linear unit."""
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0)))
return x * cdf
def gelu_new(x):
"""Smoother gaussian Error Linear Unit."""
cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def swish(x):
"""Swish activation function."""
return tf.nn.swish(x)
def mish(x):
return x * tf.math.tanh(tf.math.softplus(x))
ACT2FN = {
"identity": tf.keras.layers.Activation("linear"),
"tanh": tf.keras.layers.Activation("tanh"),
"gelu": tf.keras.layers.Activation(gelu),
"relu": tf.keras.activations.relu,
"swish": tf.keras.layers.Activation(swish),
"gelu_new": tf.keras.layers.Activation(gelu_new),
"mish": tf.keras.layers.Activation(mish),
}
class TFEmbedding(tf.keras.layers.Embedding):
"""Faster version of embedding."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def call(self, inputs):
inputs = tf.cast(inputs, tf.int32)
outputs = tf.gather(self.embeddings, inputs)
return outputs
class TFFastSpeechEmbeddings(tf.keras.layers.Layer):
"""Construct charactor/phoneme/positional/speaker embeddings."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.hidden_size = config.encoder_self_attention_params.hidden_size
self.initializer_range = config.initializer_range
self.config = config
self.position_embeddings = TFEmbedding(
config.max_position_embeddings + 1,
self.hidden_size,
weights=[
self._sincos_embedding(
self.hidden_size, self.config.max_position_embeddings
)
],
name="position_embeddings",
trainable=False,
)
if config.n_speakers > 1:
self.encoder_speaker_embeddings = TFEmbedding(
config.n_speakers,
self.hidden_size,
embeddings_initializer=get_initializer(self.initializer_range),
name="speaker_embeddings",
)
self.speaker_fc = tf.keras.layers.Dense(
units=self.hidden_size, name="speaker_fc"
)
def build(self, input_shape):
"""Build shared charactor/phoneme embedding layers."""
with tf.name_scope("charactor_embeddings"):
self.charactor_embeddings = self.add_weight(
"weight",
shape=[self.vocab_size, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
super().build(input_shape)
def call(self, inputs, training=False):
"""Get charactor embeddings of inputs.
Args:
1. charactor, Tensor (int32) shape [batch_size, length].
2. speaker_id, Tensor (int32) shape [batch_size]
Returns:
Tensor (float32) shape [batch_size, length, embedding_size].
"""
return self._embedding(inputs, training=training)
def _embedding(self, inputs, training=False):
"""Applies embedding based on inputs tensor."""
input_ids, speaker_ids = inputs
input_shape = tf.shape(input_ids)
seq_length = input_shape[1]
position_ids = tf.range(1, seq_length + 1, dtype=tf.int32)[tf.newaxis, :]
# create embeddings
inputs_embeds = tf.gather(self.charactor_embeddings, input_ids)
position_embeddings = self.position_embeddings(position_ids)
# sum embedding
embeddings = inputs_embeds + tf.cast(position_embeddings, inputs_embeds.dtype)
if self.config.n_speakers > 1:
speaker_embeddings = self.encoder_speaker_embeddings(speaker_ids)
speaker_features = tf.math.softplus(self.speaker_fc(speaker_embeddings))
# extended speaker embeddings
extended_speaker_features = speaker_features[:, tf.newaxis, :]
embeddings += extended_speaker_features
return embeddings
def _sincos_embedding(
self, hidden_size, max_positional_embedding,
):
position_enc = np.array(
[
[
pos / np.power(10000, 2.0 * (i // 2) / hidden_size)
for i in range(hidden_size)
]
for pos in range(max_positional_embedding + 1)
]
)
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2])
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2])
# pad embedding.
position_enc[0] = 0.0
return position_enc
def resize_positional_embeddings(self, new_size):
self.position_embeddings = TFEmbedding(
new_size + 1,
self.hidden_size,
weights=[self._sincos_embedding(self.hidden_size, new_size)],
name="position_embeddings",
trainable=False,
)
class TFFastSpeechSelfAttention(tf.keras.layers.Layer):
"""Self attention module for fastspeech."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.all_head_size = self.num_attention_heads * config.attention_head_size
self.query = tf.keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
name="query",
)
self.key = tf.keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
name="key",
)
self.value = tf.keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
name="value",
)
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, x, batch_size):
"""Transpose to calculate attention scores."""
x = tf.reshape(
x,
(batch_size, -1, self.num_attention_heads, self.config.attention_head_size),
)
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs, training=False):
"""Call logic."""
hidden_states, attention_mask = inputs
batch_size = tf.shape(hidden_states)[0]
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(
tf.shape(key_layer)[-1], attention_scores.dtype
) # scale attention_scores
attention_scores = attention_scores / tf.math.sqrt(dk)
if attention_mask is not None:
# extended_attention_masks for self attention encoder.
extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]
extended_attention_mask = tf.cast(
extended_attention_mask, attention_scores.dtype
)
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
attention_scores = attention_scores + extended_attention_mask
# Normalize the attention scores to probabilities.
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
attention_probs = self.dropout(attention_probs, training=training)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size))
outputs = (
(context_layer, attention_probs)
if self.output_attentions
else (context_layer,)
)
return outputs
class TFFastSpeechSelfOutput(tf.keras.layers.Layer):
"""Fastspeech output of self attention module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
self.LayerNorm = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
def call(self, inputs, training=False):
"""Call logic."""
hidden_states, input_tensor = inputs
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class TFFastSpeechAttention(tf.keras.layers.Layer):
"""Fastspeech attention module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.self_attention = TFFastSpeechSelfAttention(config, name="self")
self.dense_output = TFFastSpeechSelfOutput(config, name="output")
def call(self, inputs, training=False):
input_tensor, attention_mask = inputs
self_outputs = self.self_attention(
[input_tensor, attention_mask], training=training
)
attention_output = self.dense_output(
[self_outputs[0], input_tensor], training=training
)
masked_attention_output = attention_output * tf.cast(
tf.expand_dims(attention_mask, 2), dtype=attention_output.dtype
)
outputs = (masked_attention_output,) + self_outputs[
1:
] # add attentions if we output them
return outputs
class TFFastSpeechIntermediate(tf.keras.layers.Layer):
"""Intermediate representation module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.conv1d_1 = tf.keras.layers.Conv1D(
config.intermediate_size,
kernel_size=config.intermediate_kernel_size,
kernel_initializer=get_initializer(config.initializer_range),
padding="same",
name="conv1d_1",
)
self.conv1d_2 = tf.keras.layers.Conv1D(
config.hidden_size,
kernel_size=config.intermediate_kernel_size,
kernel_initializer=get_initializer(config.initializer_range),
padding="same",
name="conv1d_2",
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def call(self, inputs):
"""Call logic."""
hidden_states, attention_mask = inputs
hidden_states = self.conv1d_1(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.conv1d_2(hidden_states)
masked_hidden_states = hidden_states * tf.cast(
tf.expand_dims(attention_mask, 2), dtype=hidden_states.dtype
)
return masked_hidden_states
class TFFastSpeechOutput(tf.keras.layers.Layer):
"""Output module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.LayerNorm = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="LayerNorm"
)
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
def call(self, inputs, training=False):
"""Call logic."""
hidden_states, input_tensor = inputs
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class TFFastSpeechLayer(tf.keras.layers.Layer):
"""Fastspeech module (FFT module on the paper)."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.attention = TFFastSpeechAttention(config, name="attention")
self.intermediate = TFFastSpeechIntermediate(config, name="intermediate")
self.bert_output = TFFastSpeechOutput(config, name="output")
def call(self, inputs, training=False):
"""Call logic."""
hidden_states, attention_mask = inputs
attention_outputs = self.attention(
[hidden_states, attention_mask], training=training
)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(
[attention_output, attention_mask], training=training
)
layer_output = self.bert_output(
[intermediate_output, attention_output], training=training
)
masked_layer_output = layer_output * tf.cast(
tf.expand_dims(attention_mask, 2), dtype=layer_output.dtype
)
outputs = (masked_layer_output,) + attention_outputs[
1:
] # add attentions if we output them
return outputs
class TFFastSpeechEncoder(tf.keras.layers.Layer):
"""Fast Speech encoder module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = [
TFFastSpeechLayer(config, name="layer_._{}".format(i))
for i in range(config.num_hidden_layers)
]
def call(self, inputs, training=False):
"""Call logic."""
hidden_states, attention_mask = inputs
all_hidden_states = ()
all_attentions = ()
for _, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
[hidden_states, attention_mask], training=training
)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # outputs, (hidden states), (attentions)
class TFFastSpeechDecoder(TFFastSpeechEncoder):
"""Fast Speech decoder module."""
def __init__(self, config, **kwargs):
self.is_compatible_encoder = kwargs.pop("is_compatible_encoder", True)
super().__init__(config, **kwargs)
self.config = config
# create decoder positional embedding
self.decoder_positional_embeddings = TFEmbedding(
config.max_position_embeddings + 1,
config.hidden_size,
weights=[self._sincos_embedding()],
name="position_embeddings",
trainable=False,
)
if self.is_compatible_encoder is False:
self.project_compatible_decoder = tf.keras.layers.Dense(
units=config.hidden_size, name="project_compatible_decoder"
)
if config.n_speakers > 1:
self.decoder_speaker_embeddings = TFEmbedding(
config.n_speakers,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="speaker_embeddings",
)
self.speaker_fc = tf.keras.layers.Dense(
units=config.hidden_size, name="speaker_fc"
)
def call(self, inputs, training=False):
hidden_states, speaker_ids, encoder_mask, decoder_pos = inputs
if self.is_compatible_encoder is False:
hidden_states = self.project_compatible_decoder(hidden_states)
# calculate new hidden states.
hidden_states += tf.cast(
self.decoder_positional_embeddings(decoder_pos), hidden_states.dtype
)
if self.config.n_speakers > 1:
speaker_embeddings = self.decoder_speaker_embeddings(speaker_ids)
speaker_features = tf.math.softplus(self.speaker_fc(speaker_embeddings))
# extended speaker embeddings
extended_speaker_features = speaker_features[:, tf.newaxis, :]
hidden_states += extended_speaker_features
return super().call([hidden_states, encoder_mask], training=training)
def _sincos_embedding(self):
position_enc = np.array(
[
[
pos / np.power(10000, 2.0 * (i // 2) / self.config.hidden_size)
for i in range(self.config.hidden_size)
]
for pos in range(self.config.max_position_embeddings + 1)
]
)
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2])
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2])
# pad embedding.
position_enc[0] = 0.0
return position_enc
class TFTacotronPostnet(tf.keras.layers.Layer):
"""Tacotron-2 postnet."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.conv_batch_norm = []
for i in range(config.n_conv_postnet):
conv = tf.keras.layers.Conv1D(
filters=config.postnet_conv_filters
if i < config.n_conv_postnet - 1
else config.num_mels,
kernel_size=config.postnet_conv_kernel_sizes,
padding="same",
name="conv_._{}".format(i),
)
batch_norm = tf.keras.layers.BatchNormalization(
axis=-1, name="batch_norm_._{}".format(i)
)
self.conv_batch_norm.append((conv, batch_norm))
self.dropout = tf.keras.layers.Dropout(
rate=config.postnet_dropout_rate, name="dropout"
)
self.activation = [tf.nn.tanh] * (config.n_conv_postnet - 1) + [tf.identity]
def call(self, inputs, training=False):
"""Call logic."""
outputs, mask = inputs
extended_mask = tf.cast(tf.expand_dims(mask, axis=2), outputs.dtype)
for i, (conv, bn) in enumerate(self.conv_batch_norm):
outputs = conv(outputs)
outputs = bn(outputs)
outputs = self.activation[i](outputs)
outputs = self.dropout(outputs, training=training)
return outputs * extended_mask
class TFFastSpeechDurationPredictor(tf.keras.layers.Layer):
"""FastSpeech duration predictor module."""
def __init__(self, config, **kwargs):
"""Init variables."""
super().__init__(**kwargs)
self.conv_layers = []
for i in range(config.num_duration_conv_layers):
self.conv_layers.append(
tf.keras.layers.Conv1D(
config.duration_predictor_filters,
config.duration_predictor_kernel_sizes,
padding="same",
name="conv_._{}".format(i),
)
)
self.conv_layers.append(
tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="LayerNorm_._{}".format(i)
)
)
self.conv_layers.append(tf.keras.layers.Activation(tf.nn.relu6))
self.conv_layers.append(
tf.keras.layers.Dropout(config.duration_predictor_dropout_probs)
)
self.conv_layers_sequence = tf.keras.Sequential(self.conv_layers)
self.output_layer = tf.keras.layers.Dense(1)
def call(self, inputs, training=False):
"""Call logic."""
encoder_hidden_states, attention_mask = inputs
attention_mask = tf.cast(
tf.expand_dims(attention_mask, 2), encoder_hidden_states.dtype
)
# mask encoder hidden states
masked_encoder_hidden_states = encoder_hidden_states * attention_mask
# pass though first layer
outputs = self.conv_layers_sequence(masked_encoder_hidden_states)
outputs = self.output_layer(outputs)
masked_outputs = outputs * attention_mask
return tf.squeeze(tf.nn.relu6(masked_outputs), -1) # make sure positive value.
class TFFastSpeechLengthRegulator(tf.keras.layers.Layer):
"""FastSpeech lengthregulator module."""
def __init__(self, config, **kwargs):
"""Init variables."""
self.enable_tflite_convertible = kwargs.pop("enable_tflite_convertible", False)
super().__init__(**kwargs)
self.config = config
def call(self, inputs, training=False):
"""Call logic.
Args:
1. encoder_hidden_states, Tensor (float32) shape [batch_size, length, hidden_size]
2. durations_gt, Tensor (float32/int32) shape [batch_size, length]
"""
encoder_hidden_states, durations_gt = inputs
outputs, encoder_masks = self._length_regulator(
encoder_hidden_states, durations_gt
)
return outputs, encoder_masks
def _length_regulator(self, encoder_hidden_states, durations_gt):
"""Length regulator logic."""
sum_durations = tf.reduce_sum(durations_gt, axis=-1) # [batch_size]
max_durations = tf.reduce_max(sum_durations)
input_shape = tf.shape(encoder_hidden_states)
batch_size = input_shape[0]
hidden_size = input_shape[-1]
# initialize output hidden states and encoder masking.
if self.enable_tflite_convertible:
# There is only 1 batch in inference, so we don't have to use
# `tf.While` op with 3-D output tensor.
repeats = durations_gt[0]
real_length = tf.reduce_sum(repeats)
pad_size = max_durations - real_length
# masks : [max_durations]
masks = tf.sequence_mask([real_length], max_durations, dtype=tf.int32)
repeat_encoder_hidden_states = tf.repeat(
encoder_hidden_states[0], repeats=repeats, axis=0
)
repeat_encoder_hidden_states = tf.expand_dims(
tf.pad(repeat_encoder_hidden_states, [[0, pad_size], [0, 0]]), 0
) # [1, max_durations, hidden_size]
outputs = repeat_encoder_hidden_states
encoder_masks = masks
else:
outputs = tf.zeros(
shape=[0, max_durations, hidden_size], dtype=encoder_hidden_states.dtype
)
encoder_masks = tf.zeros(shape=[0, max_durations], dtype=tf.int32)
def condition(
i,
batch_size,
outputs,
encoder_masks,
encoder_hidden_states,
durations_gt,
max_durations,
):
return tf.less(i, batch_size)
def body(
i,
batch_size,
outputs,
encoder_masks,
encoder_hidden_states,
durations_gt,
max_durations,
):
repeats = durations_gt[i]
real_length = tf.reduce_sum(repeats)
pad_size = max_durations - real_length
masks = tf.sequence_mask([real_length], max_durations, dtype=tf.int32)
repeat_encoder_hidden_states = tf.repeat(
encoder_hidden_states[i], repeats=repeats, axis=0
)
repeat_encoder_hidden_states = tf.expand_dims(
tf.pad(repeat_encoder_hidden_states, [[0, pad_size], [0, 0]]), 0
) # [1, max_durations, hidden_size]
outputs = tf.concat([outputs, repeat_encoder_hidden_states], axis=0)
encoder_masks = tf.concat([encoder_masks, masks], axis=0)
return [
i + 1,
batch_size,
outputs,
encoder_masks,
encoder_hidden_states,
durations_gt,
max_durations,
]
# initialize iteration i.
i = tf.constant(0, dtype=tf.int32)
_, _, outputs, encoder_masks, _, _, _, = tf.while_loop(
condition,
body,
[
i,
batch_size,
outputs,
encoder_masks,
encoder_hidden_states,
durations_gt,
max_durations,
],
shape_invariants=[
i.get_shape(),
batch_size.get_shape(),
tf.TensorShape(
[
None,
None,
self.config.encoder_self_attention_params.hidden_size,
]
),
tf.TensorShape([None, None]),
encoder_hidden_states.get_shape(),
durations_gt.get_shape(),
max_durations.get_shape(),
],
)
return outputs, encoder_masks
class TFFastSpeech(BaseModel):
"""TF Fastspeech module."""
def __init__(self, config, **kwargs):
"""Init layers for fastspeech."""
self.enable_tflite_convertible = kwargs.pop("enable_tflite_convertible", False)
super().__init__(**kwargs)
self.embeddings = TFFastSpeechEmbeddings(config, name="embeddings")
self.encoder = TFFastSpeechEncoder(
config.encoder_self_attention_params, name="encoder"
)
self.duration_predictor = TFFastSpeechDurationPredictor(
config, dtype=tf.float32, name="duration_predictor"
)
self.length_regulator = TFFastSpeechLengthRegulator(
config,
enable_tflite_convertible=self.enable_tflite_convertible,
name="length_regulator",
)
self.decoder = TFFastSpeechDecoder(
config.decoder_self_attention_params,
is_compatible_encoder=config.encoder_self_attention_params.hidden_size
== config.decoder_self_attention_params.hidden_size,
name="decoder",
)
self.mel_dense = tf.keras.layers.Dense(
units=config.num_mels, dtype=tf.float32, name="mel_before"
)
self.postnet = TFTacotronPostnet(
config=config, dtype=tf.float32, name="postnet"
)
self.setup_inference_fn()
def _build(self):
"""Dummy input for building model."""
# fake inputs
input_ids = tf.convert_to_tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], tf.int32)
speaker_ids = tf.convert_to_tensor([0], tf.int32)
duration_gts = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], tf.int32)
self(input_ids, speaker_ids, duration_gts)
def resize_positional_embeddings(self, new_size):
self.embeddings.resize_positional_embeddings(new_size)
self._build()
def call(
self, input_ids, speaker_ids, duration_gts, training=False, **kwargs,
):
"""Call logic."""
attention_mask = tf.math.not_equal(input_ids, 0)
embedding_output = self.embeddings([input_ids, speaker_ids], training=training)
encoder_output = self.encoder(
[embedding_output, attention_mask], training=training
)
last_encoder_hidden_states = encoder_output[0]
# duration predictor, here use last_encoder_hidden_states, u can use more hidden_states layers
# rather than just use last_hidden_states of encoder for duration_predictor.
duration_outputs = self.duration_predictor(
[last_encoder_hidden_states, attention_mask]
) # [batch_size, length]
length_regulator_outputs, encoder_masks = self.length_regulator(
[last_encoder_hidden_states, duration_gts], training=training
)
# create decoder positional embedding
decoder_pos = tf.range(
1, tf.shape(length_regulator_outputs)[1] + 1, dtype=tf.int32
)
masked_decoder_pos = tf.expand_dims(decoder_pos, 0) * encoder_masks
decoder_output = self.decoder(
[length_regulator_outputs, speaker_ids, encoder_masks, masked_decoder_pos],
training=training,
)
last_decoder_hidden_states = decoder_output[0]
# here u can use sum or concat more than 1 hidden states layers from decoder.
mel_before = self.mel_dense(last_decoder_hidden_states)
mel_after = (
self.postnet([mel_before, encoder_masks], training=training) + mel_before
)
outputs = (mel_before, mel_after, duration_outputs)
return outputs
def _inference(self, input_ids, speaker_ids, speed_ratios, **kwargs):
"""Call logic."""
attention_mask = tf.math.not_equal(input_ids, 0)
embedding_output = self.embeddings([input_ids, speaker_ids], training=False)
encoder_output = self.encoder(
[embedding_output, attention_mask], training=False
)
last_encoder_hidden_states = encoder_output[0]
# duration predictor, here use last_encoder_hidden_states, u can use more hidden_states layers
# rather than just use last_hidden_states of encoder for duration_predictor.
duration_outputs = self.duration_predictor(
[last_encoder_hidden_states, attention_mask]
) # [batch_size, length]
duration_outputs = tf.math.exp(duration_outputs) - 1.0
if speed_ratios is None:
speed_ratios = tf.convert_to_tensor(np.array([1.0]), dtype=tf.float32)
speed_ratios = tf.expand_dims(speed_ratios, 1)
duration_outputs = tf.cast(
tf.math.round(duration_outputs * speed_ratios), tf.int32
)
length_regulator_outputs, encoder_masks = self.length_regulator(
[last_encoder_hidden_states, duration_outputs], training=False
)
# create decoder positional embedding
decoder_pos = tf.range(
1, tf.shape(length_regulator_outputs)[1] + 1, dtype=tf.int32
)
masked_decoder_pos = tf.expand_dims(decoder_pos, 0) * encoder_masks
decoder_output = self.decoder(
[length_regulator_outputs, speaker_ids, encoder_masks, masked_decoder_pos],
training=False,
)
last_decoder_hidden_states = decoder_output[0]
# here u can use sum or concat more than 1 hidden states layers from decoder.
mel_before = self.mel_dense(last_decoder_hidden_states)
mel_after = (
self.postnet([mel_before, encoder_masks], training=False) + mel_before
)
outputs = (mel_before, mel_after, duration_outputs)
return outputs
def setup_inference_fn(self):
self.inference = tf.function(
self._inference,
experimental_relax_shapes=True,
input_signature=[
tf.TensorSpec(shape=[None, None], dtype=tf.int32, name="input_ids"),
tf.TensorSpec(shape=[None,], dtype=tf.int32, name="speaker_ids"),
tf.TensorSpec(shape=[None,], dtype=tf.float32, name="speed_ratios"),
],
)
self.inference_tflite = tf.function(
self._inference,
experimental_relax_shapes=True,
input_signature=[
tf.TensorSpec(shape=[1, None], dtype=tf.int32, name="input_ids"),
tf.TensorSpec(shape=[1,], dtype=tf.int32, name="speaker_ids"),
tf.TensorSpec(shape=[1,], dtype=tf.float32, name="speed_ratios"),
],
)