vishred18's picture
Upload 364 files
d5ee97c
raw
history blame
4.63 kB
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decode trained Mb-Melgan from folder."""
import argparse
import logging
import os
import numpy as np
import soundfile as sf
import yaml
from tqdm import tqdm
from tensorflow_tts.configs import ParallelWaveGANGeneratorConfig
from tensorflow_tts.datasets import MelDataset
from tensorflow_tts.models import TFParallelWaveGANGenerator
def main():
"""Run parallel_wavegan decoding from folder."""
parser = argparse.ArgumentParser(
description="Generate Audio from melspectrogram with trained melgan "
"(See detail in examples/parallel_wavegan/decode_parallel_wavegan.py)."
)
parser.add_argument(
"--rootdir",
default=None,
type=str,
required=True,
help="directory including ids/durations files.",
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save generated speech."
)
parser.add_argument(
"--checkpoint", type=str, required=True, help="checkpoint file to be loaded."
)
parser.add_argument(
"--use-norm", type=int, default=1, help="Use norm or raw melspectrogram."
)
parser.add_argument("--batch-size", type=int, default=8, help="batch_size.")
parser.add_argument(
"--config",
default=None,
type=str,
required=True,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)",
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# load config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
if config["format"] == "npy":
mel_query = "*-fs-after-feats.npy" if "fastspeech" in args.rootdir else "*-norm-feats.npy" if args.use_norm == 1 else "*-raw-feats.npy"
mel_load_fn = np.load
else:
raise ValueError("Only npy is supported.")
# define data-loader
dataset = MelDataset(
root_dir=args.rootdir,
mel_query=mel_query,
mel_load_fn=mel_load_fn,
)
dataset = dataset.create(batch_size=args.batch_size)
# define model and load checkpoint
parallel_wavegan = TFParallelWaveGANGenerator(
config=ParallelWaveGANGeneratorConfig(**config["parallel_wavegan_generator_params"]),
name="parallel_wavegan_generator",
)
parallel_wavegan._build()
parallel_wavegan.load_weights(args.checkpoint)
for data in tqdm(dataset, desc="[Decoding]"):
utt_ids, mels, mel_lengths = data["utt_ids"], data["mels"], data["mel_lengths"]
# pwgan inference.
generated_audios = parallel_wavegan.inference(mels)
# convert to numpy.
generated_audios = generated_audios.numpy() # [B, T]
# save to outdir
for i, audio in enumerate(generated_audios):
utt_id = utt_ids[i].numpy().decode("utf-8")
sf.write(
os.path.join(args.outdir, f"{utt_id}.wav"),
audio[: mel_lengths[i].numpy() * config["hop_size"]],
config["sampling_rate"],
"PCM_16",
)
if __name__ == "__main__":
main()