Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/parallel_wavegan
/conf
/parallel_wavegan.v1.yaml
# This is the hyperparameter configuration file for ParallelWavegan. | |
# Please make sure this is adjusted for the LJSpeech dataset. If you want to | |
# apply to the other dataset, you might need to carefully change some parameters. | |
# This configuration performs 4000k iters. | |
# Original: https://github.com/kan-bayashi/ParallelWaveGAN/blob/master/egs/ljspeech/voc1/conf/parallel_wavegan.v1.yaml | |
########################################################### | |
# FEATURE EXTRACTION SETTING # | |
########################################################### | |
sampling_rate: 22050 | |
hop_size: 256 # Hop size. | |
format: "npy" | |
########################################################### | |
# GENERATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
model_type: "parallel_wavegan_generator" | |
parallel_wavegan_generator_params: | |
out_channels: 1 # Number of output channels. | |
kernel_size: 3 # Kernel size of dilated convolution. | |
n_layers: 30 # Number of residual block layers. | |
stacks: 3 # Number of stacks i.e., dilation cycles. | |
residual_channels: 64 # Number of channels in residual conv. | |
gate_channels: 128 # Number of channels in gated conv. | |
skip_channels: 64 # Number of channels in skip conv. | |
aux_channels: 80 # Number of channels for auxiliary feature conv. | |
# Must be the same as num_mels. | |
aux_context_window: 2 # Context window size for auxiliary feature. | |
# If set to 2, previous 2 and future 2 frames will be considered. | |
dropout: 0.0 # Dropout rate. 0.0 means no dropout applied. | |
upsample_params: # Upsampling network parameters. | |
upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size. | |
########################################################### | |
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
parallel_wavegan_discriminator_params: | |
out_channels: 1 # Number of output channels. | |
kernel_size: 3 # Number of output channels. | |
n_layers: 10 # Number of conv layers. | |
conv_channels: 64 # Number of chnn layers. | |
use_bias: true # Whether to use bias parameter in conv. | |
nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv. | |
nonlinear_activation_params: # Nonlinear function parameters | |
alpha: 0.2 # Alpha in LeakyReLU. | |
########################################################### | |
# STFT LOSS SETTING # | |
########################################################### | |
stft_loss_params: | |
fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. | |
frame_steps: [120, 240, 50] # List of hop size for STFT-based loss | |
frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. | |
########################################################### | |
# ADVERSARIAL LOSS SETTING # | |
########################################################### | |
lambda_adv: 4.0 # Loss balancing coefficient. | |
########################################################### | |
# DATA LOADER SETTING # | |
########################################################### | |
batch_size: 6 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. | |
batch_max_steps: 25600 # Length of each audio in batch for training. Make sure dividable by hop_size. | |
batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. | |
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. | |
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. | |
is_shuffle: true # shuffle dataset after each epoch. | |
########################################################### | |
# OPTIMIZER & SCHEDULER SETTING # | |
########################################################### | |
generator_optimizer_params: | |
lr_fn: "ExponentialDecay" | |
lr_params: | |
initial_learning_rate: 0.0005 | |
decay_steps: 200000 | |
decay_rate: 0.5 | |
discriminator_optimizer_params: | |
lr_fn: "ExponentialDecay" | |
lr_params: | |
initial_learning_rate: 0.0005 | |
decay_steps: 200000 | |
decay_rate: 0.5 | |
gradient_accumulation_steps: 1 | |
########################################################### | |
# INTERVAL SETTING # | |
########################################################### | |
discriminator_train_start_steps: 100000 # steps begin training discriminator | |
train_max_steps: 400000 # Number of training steps. | |
save_interval_steps: 5000 # Interval steps to save checkpoint. | |
eval_interval_steps: 2000 # Interval steps to evaluate the network. | |
log_interval_steps: 200 # Interval steps to record the training log. | |
########################################################### | |
# OTHER SETTING # | |
########################################################### | |
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. | |