Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/tensorflow_tts
/inference
/auto_config.py
# -*- coding: utf-8 -*- | |
# Copyright 2020 The HuggingFace Inc. team and Minh Nguyen (@dathudeptrai) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tensorflow Auto Config modules.""" | |
import logging | |
import yaml | |
import os | |
from collections import OrderedDict | |
from tensorflow_tts.configs import ( | |
FastSpeechConfig, | |
FastSpeech2Config, | |
MelGANGeneratorConfig, | |
MultiBandMelGANGeneratorConfig, | |
HifiGANGeneratorConfig, | |
Tacotron2Config, | |
ParallelWaveGANGeneratorConfig, | |
) | |
from tensorflow_tts.utils import CACHE_DIRECTORY, CONFIG_FILE_NAME, LIBRARY_NAME | |
from tensorflow_tts import __version__ as VERSION | |
from huggingface_hub import hf_hub_url, cached_download | |
CONFIG_MAPPING = OrderedDict( | |
[ | |
("fastspeech", FastSpeechConfig), | |
("fastspeech2", FastSpeech2Config), | |
("multiband_melgan_generator", MultiBandMelGANGeneratorConfig), | |
("melgan_generator", MelGANGeneratorConfig), | |
("hifigan_generator", HifiGANGeneratorConfig), | |
("tacotron2", Tacotron2Config), | |
("parallel_wavegan_generator", ParallelWaveGANGeneratorConfig), | |
] | |
) | |
class AutoConfig: | |
def __init__(self): | |
raise EnvironmentError( | |
"AutoConfig is designed to be instantiated " | |
"using the `AutoConfig.from_pretrained(pretrained_path)` method." | |
) | |
def from_pretrained(cls, pretrained_path, **kwargs): | |
# load weights from hf hub | |
if not os.path.isfile(pretrained_path): | |
# retrieve correct hub url | |
download_url = hf_hub_url( | |
repo_id=pretrained_path, filename=CONFIG_FILE_NAME | |
) | |
pretrained_path = str( | |
cached_download( | |
url=download_url, | |
library_name=LIBRARY_NAME, | |
library_version=VERSION, | |
cache_dir=CACHE_DIRECTORY, | |
) | |
) | |
with open(pretrained_path) as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
try: | |
model_type = config["model_type"] | |
config_class = CONFIG_MAPPING[model_type] | |
config_class = config_class(**config[model_type + "_params"], **kwargs) | |
config_class.set_config_params(config) | |
return config_class | |
except Exception: | |
raise ValueError( | |
"Unrecognized config in {}. " | |
"Should have a `model_type` key in its config.yaml, or contain one of the following strings " | |
"in its name: {}".format( | |
pretrained_path, ", ".join(CONFIG_MAPPING.keys()) | |
) | |
) | |