Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/tensorflow_tts
/inference
/savable_models.py
# -*- coding: utf-8 -*- | |
# Copyright 2020 TensorFlowTTS Team | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tensorflow Savable Model modules.""" | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow_tts.models import ( | |
TFFastSpeech, | |
TFFastSpeech2, | |
TFMelGANGenerator, | |
TFMBMelGANGenerator, | |
TFHifiGANGenerator, | |
TFTacotron2, | |
TFParallelWaveGANGenerator, | |
) | |
class SavableTFTacotron2(TFTacotron2): | |
def __init__(self, config, **kwargs): | |
super().__init__(config, **kwargs) | |
def call(self, inputs, training=False): | |
input_ids, input_lengths, speaker_ids = inputs | |
return super().inference(input_ids, input_lengths, speaker_ids) | |
def _build(self): | |
input_ids = tf.convert_to_tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]], dtype=tf.int32) | |
input_lengths = tf.convert_to_tensor([9], dtype=tf.int32) | |
speaker_ids = tf.convert_to_tensor([0], dtype=tf.int32) | |
self([input_ids, input_lengths, speaker_ids]) | |
class SavableTFFastSpeech(TFFastSpeech): | |
def __init__(self, config, **kwargs): | |
super().__init__(config, **kwargs) | |
def call(self, inputs, training=False): | |
input_ids, speaker_ids, speed_ratios = inputs | |
return super()._inference(input_ids, speaker_ids, speed_ratios) | |
def _build(self): | |
input_ids = tf.convert_to_tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], tf.int32) | |
speaker_ids = tf.convert_to_tensor([0], tf.int32) | |
speed_ratios = tf.convert_to_tensor([1.0], tf.float32) | |
self([input_ids, speaker_ids, speed_ratios]) | |
class SavableTFFastSpeech2(TFFastSpeech2): | |
def __init__(self, config, **kwargs): | |
super().__init__(config, **kwargs) | |
def call(self, inputs, training=False): | |
input_ids, speaker_ids, speed_ratios, f0_ratios, energy_ratios = inputs | |
return super()._inference( | |
input_ids, speaker_ids, speed_ratios, f0_ratios, energy_ratios | |
) | |
def _build(self): | |
input_ids = tf.convert_to_tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], tf.int32) | |
speaker_ids = tf.convert_to_tensor([0], tf.int32) | |
speed_ratios = tf.convert_to_tensor([1.0], tf.float32) | |
f0_ratios = tf.convert_to_tensor([1.0], tf.float32) | |
energy_ratios = tf.convert_to_tensor([1.0], tf.float32) | |
self([input_ids, speaker_ids, speed_ratios, f0_ratios, energy_ratios]) | |