File size: 10,197 Bytes
b9bb7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d65e
b9bb7e7
 
c64d65e
b9bb7e7
 
bdc42f3
 
 
 
 
 
 
c64d65e
 
bdc42f3
c64d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc42f3
c64d65e
 
 
 
 
 
 
 
bdc42f3
 
c64d65e
 
 
 
 
bdc42f3
c64d65e
 
 
bdc42f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d65e
bdc42f3
 
 
 
 
 
c64d65e
 
 
bdc42f3
 
 
 
 
 
 
 
 
 
c64d65e
 
 
036be0e
 
 
bdc42f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc42f3
c64d65e
 
 
 
 
bdc42f3
036be0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc42f3
036be0e
 
 
 
c64d65e
036be0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
import os

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

from pathlib import Path
import chromadb

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate


# default_persist_directory = './chroma_HF/'

list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        # persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080
    if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
        )
    elif llm_model == "microsoft/phi-2":
        raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
        )
    elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
        )
    elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
        raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
        )
    else:
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
        )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
    retriever=vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        #return_generated_question=False,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

def start(llm_model, temperature, max_tokens, top_k, 
          vector_db, list_file_obj, chunk_size, chunk_overlap,
         qa_chain, message, history):
    # HuggingFaceHub uses HF inference endpoints
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080
    llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature, 
                                                          "max_new_tokens": max_tokens, 
                                                          "top_k": top_k, 
                                                          "load_in_8bit": True})
    memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)

    retriever=vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        #return_generated_question=False,
        verbose=False,
    )

    # Create list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]
    
    # Create collection_name for vector database
    collection_name = Path(list_file_path[0]).stem
    
    # Fix potential issues from naming convention
    ## Remove space
    collection_name = collection_name.replace(" ","-") 
    ## Limit lenght to 50 characters
    collection_name = collection_name[:50]
    ## Enforce start and end as alphanumeric character
    if not collection_name[0].isalnum():
        collection_name[0] = 'A'
    if not collection_name[-1].isalnum():
        collection_name[-1] = 'Z'
    # print('list_file_path: ', list_file_path)
    print('Collection name: ', collection_name)

    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    
    # Create or load vector database
    vector_db = create_db(doc_splits, collection_name)

    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # print ('chat response: ', response_answer)
    # print('DB source', response_sources)
    
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    
    return qa_chain, vector_db, collection_name, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
    
def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()

        chatbot = gr.Chatbot(height=300)
        with gr.Accordion("Advanced - Document references", open=False):
            with gr.Row():
                doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                source1_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                source2_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                source3_page = gr.Number(label="Page", scale=1)
        with gr.Row():
            msg = gr.Textbox(placeholder="Type message", container=True)
        with gr.Row():
            submit_btn = gr.Button("Submit")
            clear_btn = gr.ClearButton([msg, chatbot])

        msg.submit(start, 
                   inputs=[llm_model, temperature, max_tokens, top_k, 
                           vector_db, list_file_obj, chunk_size, chunk_overlap,
                           qa_chain, message, history], 
                   outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, 
                            doc_source2, source2_page, 
                            doc_source3, source3_page], 
                   queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
    
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()