File size: 10,197 Bytes
b9bb7e7 c64d65e b9bb7e7 c64d65e b9bb7e7 bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 c64d65e 036be0e bdc42f3 c64d65e bdc42f3 c64d65e bdc42f3 036be0e bdc42f3 036be0e c64d65e 036be0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from pathlib import Path
import chromadb
from transformers import AutoTokenizer
import transformers
import torch
import tqdm
import accelerate
# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
# Processing for one document only
# loader = PyPDFLoader(file_path)
# pages = loader.load()
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = chunk_size,
chunk_overlap = chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
# persist_directory=default_persist_directory
)
return vectordb
# Load vector database
def load_db():
embedding = HuggingFaceEmbeddings()
vectordb = Chroma(
# persist_directory=default_persist_directory,
embedding_function=embedding)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Initializing HF tokenizer...")
# HuggingFaceHub uses HF inference endpoints
progress(0.5, desc="Initializing HF Hub...")
# Use of trust_remote_code as model_kwargs
# Warning: langchain issue
# URL: https://github.com/langchain-ai/langchain/issues/6080
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
)
elif llm_model == "microsoft/phi-2":
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
)
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
)
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
)
else:
llm = HuggingFaceHub(
repo_id=llm_model,
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
)
progress(0.75, desc="Defining buffer memory...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
retriever=vector_db.as_retriever()
progress(0.8, desc="Defining retrieval chain...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
# combine_docs_chain_kwargs={"prompt": your_prompt})
return_source_documents=True,
#return_generated_question=False,
verbose=False,
)
progress(0.9, desc="Done!")
return qa_chain
def start(llm_model, temperature, max_tokens, top_k,
vector_db, list_file_obj, chunk_size, chunk_overlap,
qa_chain, message, history):
# HuggingFaceHub uses HF inference endpoints
# Use of trust_remote_code as model_kwargs
# Warning: langchain issue
# URL: https://github.com/langchain-ai/langchain/issues/6080
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature,
"max_new_tokens": max_tokens,
"top_k": top_k,
"load_in_8bit": True})
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
retriever=vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
# combine_docs_chain_kwargs={"prompt": your_prompt})
return_source_documents=True,
#return_generated_question=False,
verbose=False,
)
# Create list of documents (when valid)
list_file_path = [x.name for x in list_file_obj if x is not None]
# Create collection_name for vector database
collection_name = Path(list_file_path[0]).stem
# Fix potential issues from naming convention
## Remove space
collection_name = collection_name.replace(" ","-")
## Limit lenght to 50 characters
collection_name = collection_name[:50]
## Enforce start and end as alphanumeric character
if not collection_name[0].isalnum():
collection_name[0] = 'A'
if not collection_name[-1].isalnum():
collection_name[-1] = 'Z'
# print('list_file_path: ', list_file_path)
print('Collection name: ', collection_name)
# Load document and create splits
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
# Create or load vector database
vector_db = create_db(doc_splits, collection_name)
formatted_chat_history = format_chat_history(message, history)
#print("formatted_chat_history",formatted_chat_history)
# Generate response using QA chain
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
# Langchain sources are zero-based
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
# print ('chat response: ', response_answer)
# print('DB source', response_sources)
# Append user message and response to chat history
new_history = history + [(message, response_answer)]
return qa_chain, vector_db, collection_name, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
chatbot = gr.Chatbot(height=300)
with gr.Accordion("Advanced - Document references", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Type message", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
msg.submit(start,
inputs=[llm_model, temperature, max_tokens, top_k,
vector_db, list_file_obj, chunk_size, chunk_overlap,
qa_chain, message, history],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
doc_source2, source2_page,
doc_source3, source3_page],
queue=False)
submit_btn.click(conversation, \
inputs=[qa_chain, msg, chatbot], \
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
inputs=None, \
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|