|
import gradio as gr |
|
import os |
|
|
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.llms import HuggingFaceHub |
|
|
|
from pathlib import Path |
|
import chromadb |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
import tqdm |
|
import accelerate |
|
|
|
|
|
|
|
|
|
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap): |
|
|
|
|
|
|
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size = chunk_size, |
|
chunk_overlap = chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits, collection_name): |
|
embedding = HuggingFaceEmbeddings() |
|
new_client = chromadb.EphemeralClient() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
client=new_client, |
|
collection_name=collection_name, |
|
|
|
) |
|
return vectordb |
|
|
|
|
|
|
|
def load_db(): |
|
embedding = HuggingFaceEmbeddings() |
|
vectordb = Chroma( |
|
|
|
embedding_function=embedding) |
|
return vectordb |
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
progress(0.1, desc="Initializing HF tokenizer...") |
|
|
|
|
|
progress(0.5, desc="Initializing HF Hub...") |
|
|
|
|
|
|
|
|
|
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True} |
|
) |
|
elif llm_model == "microsoft/phi-2": |
|
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...") |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"} |
|
) |
|
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k} |
|
) |
|
elif llm_model == "meta-llama/Llama-2-7b-chat-hf": |
|
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...") |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} |
|
) |
|
else: |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
|
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} |
|
) |
|
|
|
progress(0.75, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever=vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
|
|
return_source_documents=True, |
|
|
|
verbose=False, |
|
) |
|
progress(0.9, desc="Done!") |
|
return qa_chain |
|
|
|
def start(llm_model, temperature, max_tokens, top_k, vector_db, list_file_obj, chunk_size, chunk_overlap): |
|
|
|
|
|
|
|
|
|
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature, |
|
"max_new_tokens": max_tokens, |
|
"top_k": top_k, |
|
"load_in_8bit": True}) |
|
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True) |
|
|
|
retriever=vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
|
|
return_source_documents=True, |
|
|
|
verbose=False, |
|
) |
|
|
|
|
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
|
|
|
|
collection_name = Path(list_file_path[0]).stem |
|
|
|
|
|
|
|
collection_name = collection_name.replace(" ","-") |
|
|
|
collection_name = collection_name[:50] |
|
|
|
if not collection_name[0].isalnum(): |
|
collection_name[0] = 'A' |
|
if not collection_name[-1].isalnum(): |
|
collection_name[-1] = 'Z' |
|
|
|
print('Collection name: ', collection_name) |
|
|
|
|
|
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) |
|
|
|
|
|
vector_db = create_db(doc_splits, collection_name) |
|
|
|
|
|
return qa_chain, vector_db, collection_name |
|
|
|
|
|
|