Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from langchain.llms import HuggingFacePipeline
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
-
from langchain.memory import
|
14 |
|
15 |
from pathlib import Path
|
16 |
import chromadb
|
@@ -128,9 +128,8 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.P
|
|
128 |
"load_in_8bit": True})
|
129 |
|
130 |
progress(0.75, desc="Defining buffer memory...")
|
131 |
-
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
|
132 |
-
|
133 |
-
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
134 |
retriever=vector_db.as_retriever()
|
135 |
progress(0.8, desc="Defining retrieval chain...")
|
136 |
qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
|
@@ -177,9 +176,9 @@ def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Pr
|
|
177 |
return qa_chain, "Complete!"
|
178 |
|
179 |
|
180 |
-
def format_chat_history(message,
|
181 |
formatted_chat_history = []
|
182 |
-
for user_message, bot_message in
|
183 |
formatted_chat_history.append(f"User: {user_message}")
|
184 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
185 |
return formatted_chat_history
|
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
+
from langchain.memory import ConversationBufferWindowMemory
|
14 |
|
15 |
from pathlib import Path
|
16 |
import chromadb
|
|
|
128 |
"load_in_8bit": True})
|
129 |
|
130 |
progress(0.75, desc="Defining buffer memory...")
|
131 |
+
#memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
|
132 |
+
memory = ConversationBufferWindowMemory(memory_key = 'history', k=3)
|
|
|
133 |
retriever=vector_db.as_retriever()
|
134 |
progress(0.8, desc="Defining retrieval chain...")
|
135 |
qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
|
|
|
176 |
return qa_chain, "Complete!"
|
177 |
|
178 |
|
179 |
+
def format_chat_history(message, history):
|
180 |
formatted_chat_history = []
|
181 |
+
for user_message, bot_message in history:
|
182 |
formatted_chat_history.append(f"User: {user_message}")
|
183 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
184 |
return formatted_chat_history
|