Update app.py
Browse files
app.py
CHANGED
@@ -21,12 +21,16 @@ import tqdm
|
|
21 |
import accelerate
|
22 |
|
23 |
|
24 |
-
#
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
# Load PDF document and create doc splits
|
30 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
31 |
# Processing for one document only
|
32 |
# loader = PyPDFLoader(file_path)
|
@@ -55,7 +59,6 @@ def create_db(splits, collection_name):
|
|
55 |
)
|
56 |
return vectordb
|
57 |
|
58 |
-
|
59 |
# Load vector database
|
60 |
def load_db():
|
61 |
embedding = HuggingFaceEmbeddings()
|
@@ -64,99 +67,38 @@ def load_db():
|
|
64 |
embedding_function=embedding)
|
65 |
return vectordb
|
66 |
|
67 |
-
|
68 |
# Initialize langchain LLM chain
|
69 |
-
def initialize_llmchain(
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
# Warning: langchain issue
|
77 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
78 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
79 |
-
llm = HuggingFaceHub(
|
80 |
-
repo_id=llm_model,
|
81 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
82 |
-
)
|
83 |
-
elif llm_model == "microsoft/phi-2":
|
84 |
-
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
85 |
-
llm = HuggingFaceHub(
|
86 |
-
repo_id=llm_model,
|
87 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
88 |
-
)
|
89 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
90 |
-
llm = HuggingFaceHub(
|
91 |
-
repo_id=llm_model,
|
92 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
93 |
-
)
|
94 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
95 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
96 |
-
llm = HuggingFaceHub(
|
97 |
-
repo_id=llm_model,
|
98 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
99 |
-
)
|
100 |
-
else:
|
101 |
-
llm = HuggingFaceHub(
|
102 |
-
repo_id=llm_model,
|
103 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
104 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
105 |
-
)
|
106 |
-
|
107 |
-
progress(0.75, desc="Defining buffer memory...")
|
108 |
-
memory = ConversationBufferMemory(
|
109 |
-
memory_key="chat_history",
|
110 |
-
output_key='answer',
|
111 |
-
return_messages=True
|
112 |
-
)
|
113 |
-
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
114 |
retriever=vector_db.as_retriever()
|
115 |
-
progress(0.8, desc="Defining retrieval chain...")
|
116 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
117 |
llm,
|
118 |
retriever=retriever,
|
119 |
chain_type="stuff",
|
120 |
memory=memory,
|
121 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
122 |
return_source_documents=True,
|
123 |
-
#return_generated_question=False,
|
124 |
verbose=False,
|
125 |
)
|
126 |
-
progress(0.9, desc="Done!")
|
127 |
return qa_chain
|
128 |
|
129 |
-
def start(llm_model, temperature, max_tokens, top_k,
|
130 |
-
vector_db, list_file_obj, chunk_size, chunk_overlap,
|
131 |
-
qa_chain, message, history):
|
132 |
-
# HuggingFaceHub uses HF inference endpoints
|
133 |
-
# Use of trust_remote_code as model_kwargs
|
134 |
-
# Warning: langchain issue
|
135 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
136 |
-
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature,
|
137 |
-
"max_new_tokens": max_tokens,
|
138 |
-
"top_k": top_k,
|
139 |
-
"load_in_8bit": True})
|
140 |
-
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
|
141 |
|
142 |
-
|
143 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
144 |
-
llm,
|
145 |
-
retriever=retriever,
|
146 |
-
chain_type="stuff",
|
147 |
-
memory=memory,
|
148 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
149 |
-
return_source_documents=True,
|
150 |
-
#return_generated_question=False,
|
151 |
-
verbose=False,
|
152 |
-
)
|
153 |
|
|
|
|
|
|
|
|
|
154 |
# Create list of documents (when valid)
|
155 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
156 |
-
|
157 |
# Create collection_name for vector database
|
|
|
158 |
collection_name = Path(list_file_path[0]).stem
|
159 |
-
|
160 |
# Fix potential issues from naming convention
|
161 |
## Remove space
|
162 |
collection_name = collection_name.replace(" ","-")
|
@@ -169,13 +111,33 @@ def start(llm_model, temperature, max_tokens, top_k,
|
|
169 |
collection_name[-1] = 'Z'
|
170 |
# print('list_file_path: ', list_file_path)
|
171 |
print('Collection name: ', collection_name)
|
172 |
-
|
173 |
# Load document and create splits
|
174 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
175 |
-
|
176 |
# Create or load vector database
|
|
|
|
|
177 |
vector_db = create_db(doc_splits, collection_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
formatted_chat_history = format_chat_history(message, history)
|
180 |
#print("formatted_chat_history",formatted_chat_history)
|
181 |
|
@@ -197,17 +159,22 @@ def start(llm_model, temperature, max_tokens, top_k,
|
|
197 |
|
198 |
# Append user message and response to chat history
|
199 |
new_history = history + [(message, response_answer)]
|
|
|
|
|
200 |
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
203 |
def demo():
|
204 |
-
with gr.Blocks(theme=
|
205 |
vector_db = gr.State()
|
206 |
qa_chain = gr.State()
|
207 |
collection_name = gr.State()
|
208 |
-
|
209 |
chatbot = gr.Chatbot(height=300)
|
210 |
-
with gr.Accordion(
|
211 |
with gr.Row():
|
212 |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
213 |
source1_page = gr.Number(label="Page", scale=1)
|
@@ -218,19 +185,18 @@ def demo():
|
|
218 |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
219 |
source3_page = gr.Number(label="Page", scale=1)
|
220 |
with gr.Row():
|
221 |
-
msg = gr.Textbox(placeholder=
|
222 |
with gr.Row():
|
223 |
-
submit_btn = gr.Button(
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
queue=False)
|
234 |
submit_btn.click(conversation, \
|
235 |
inputs=[qa_chain, msg, chatbot], \
|
236 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
@@ -239,8 +205,5 @@ def demo():
|
|
239 |
inputs=None, \
|
240 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
241 |
queue=False)
|
242 |
-
|
243 |
demo.queue().launch(debug=True)
|
244 |
-
|
245 |
-
if __name__ == "__main__":
|
246 |
-
demo()
|
|
|
21 |
import accelerate
|
22 |
|
23 |
|
24 |
+
#Set parameters
|
25 |
|
26 |
+
llm_model = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
|
27 |
+
list_file_path = '/home/niti/something'
|
28 |
+
chunk_size = 1024
|
29 |
+
chunk_overlap = 128
|
30 |
+
temperature = 0.1
|
31 |
+
max_tokens = 6000
|
32 |
+
top_k = 3
|
33 |
|
|
|
34 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
35 |
# Processing for one document only
|
36 |
# loader = PyPDFLoader(file_path)
|
|
|
59 |
)
|
60 |
return vectordb
|
61 |
|
|
|
62 |
# Load vector database
|
63 |
def load_db():
|
64 |
embedding = HuggingFaceEmbeddings()
|
|
|
67 |
embedding_function=embedding)
|
68 |
return vectordb
|
69 |
|
|
|
70 |
# Initialize langchain LLM chain
|
71 |
+
def initialize_llmchain(vector_db):
|
72 |
+
llm = HuggingFaceHub(repo_id = llm_model,
|
73 |
+
model_kwargs={"temperature": temperature,
|
74 |
+
"max_new_tokens": max_tokens,
|
75 |
+
"top_k": top_k,
|
76 |
+
"load_in_8bit": True})
|
77 |
|
78 |
+
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
retriever=vector_db.as_retriever()
|
|
|
80 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
81 |
llm,
|
82 |
retriever=retriever,
|
83 |
chain_type="stuff",
|
84 |
memory=memory,
|
|
|
85 |
return_source_documents=True,
|
|
|
86 |
verbose=False,
|
87 |
)
|
|
|
88 |
return qa_chain
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
vector_db, collection_name = initialize_database()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
#list_file_obj = document
|
94 |
+
|
95 |
+
# Initialize database
|
96 |
+
def initialize_database(list_file_obj):
|
97 |
# Create list of documents (when valid)
|
98 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
99 |
# Create collection_name for vector database
|
100 |
+
progress(0.1, desc="Creating collection name...")
|
101 |
collection_name = Path(list_file_path[0]).stem
|
|
|
102 |
# Fix potential issues from naming convention
|
103 |
## Remove space
|
104 |
collection_name = collection_name.replace(" ","-")
|
|
|
111 |
collection_name[-1] = 'Z'
|
112 |
# print('list_file_path: ', list_file_path)
|
113 |
print('Collection name: ', collection_name)
|
114 |
+
progress(0.25, desc="Loading document...")
|
115 |
# Load document and create splits
|
116 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
|
|
117 |
# Create or load vector database
|
118 |
+
progress(0.5, desc="Generating vector database...")
|
119 |
+
# global vector_db
|
120 |
vector_db = create_db(doc_splits, collection_name)
|
121 |
+
progress(0.9, desc="Done!")
|
122 |
+
return vector_db, collection_name
|
123 |
+
|
124 |
+
|
125 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
126 |
+
# print("llm_option",llm_option)
|
127 |
+
llm_name = llm_model
|
128 |
+
qa_chain = initialize_llmchain(llm_name, temperature, max_tokens, top_k, vector_db)
|
129 |
+
return qa_chain
|
130 |
+
|
131 |
|
132 |
+
def format_chat_history(message, chat_history):
|
133 |
+
formatted_chat_history = []
|
134 |
+
for user_message, bot_message in chat_history:
|
135 |
+
formatted_chat_history.append(f"User: {user_message}")
|
136 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
137 |
+
return formatted_chat_history
|
138 |
+
|
139 |
+
|
140 |
+
def conversation(qa_chain, message, history):
|
141 |
formatted_chat_history = format_chat_history(message, history)
|
142 |
#print("formatted_chat_history",formatted_chat_history)
|
143 |
|
|
|
159 |
|
160 |
# Append user message and response to chat history
|
161 |
new_history = history + [(message, response_answer)]
|
162 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
163 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
164 |
|
165 |
+
document = os.listdir(list_file_path)
|
166 |
+
vector_db, collection_name = initialize_database(document)
|
167 |
+
qa_chain = initialize_LLM(vector_db)
|
168 |
+
|
169 |
+
|
170 |
def demo():
|
171 |
+
with gr.Blocks(theme='base') as demo:
|
172 |
vector_db = gr.State()
|
173 |
qa_chain = gr.State()
|
174 |
collection_name = gr.State()
|
175 |
+
|
176 |
chatbot = gr.Chatbot(height=300)
|
177 |
+
with gr.Accordion('References', open=True):
|
178 |
with gr.Row():
|
179 |
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
180 |
source1_page = gr.Number(label="Page", scale=1)
|
|
|
185 |
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
186 |
source3_page = gr.Number(label="Page", scale=1)
|
187 |
with gr.Row():
|
188 |
+
msg = gr.Textbox(placeholder = 'Ask your question', container = True)
|
189 |
with gr.Row():
|
190 |
+
submit_btn = gr.Button('Submit')
|
191 |
+
clear_button = gr.ClearButton([msg, chatbot])
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
msg.submit(conversation, \
|
197 |
+
inputs=[qa_chain, msg, chatbot], \
|
198 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
199 |
+
queue=False)
|
|
|
200 |
submit_btn.click(conversation, \
|
201 |
inputs=[qa_chain, msg, chatbot], \
|
202 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
|
205 |
inputs=None, \
|
206 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
207 |
queue=False)
|
|
|
208 |
demo.queue().launch(debug=True)
|
209 |
+
|
|
|
|