Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,13 @@ import torch
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# default_persist_directory = './chroma_HF/'
|
@@ -73,62 +80,12 @@ def load_db():
|
|
73 |
|
74 |
# Initialize langchain LLM chain
|
75 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# pipeline=transformers.pipeline(
|
82 |
-
# "text-generation",
|
83 |
-
# model=llm_model,
|
84 |
-
# tokenizer=tokenizer,
|
85 |
-
# torch_dtype=torch.bfloat16,
|
86 |
-
# trust_remote_code=True,
|
87 |
-
# device_map="auto",
|
88 |
-
# # max_length=1024,
|
89 |
-
# max_new_tokens=max_tokens,
|
90 |
-
# do_sample=True,
|
91 |
-
# top_k=top_k,
|
92 |
-
# num_return_sequences=1,
|
93 |
-
# eos_token_id=tokenizer.eos_token_id
|
94 |
-
# )
|
95 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
96 |
-
|
97 |
-
# HuggingFaceHub uses HF inference endpoints
|
98 |
-
progress(0.5, desc="Initializing HF Hub...")
|
99 |
-
# Use of trust_remote_code as model_kwargs
|
100 |
-
# Warning: langchain issue
|
101 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
102 |
-
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
103 |
-
llm = HuggingFaceHub(
|
104 |
-
repo_id=llm_model,
|
105 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
106 |
-
)
|
107 |
-
elif llm_model == "microsoft/phi-2":
|
108 |
-
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
109 |
-
llm = HuggingFaceHub(
|
110 |
-
repo_id=llm_model,
|
111 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
112 |
-
)
|
113 |
-
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
114 |
-
llm = HuggingFaceHub(
|
115 |
-
repo_id=llm_model,
|
116 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
117 |
-
)
|
118 |
-
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
119 |
-
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
120 |
-
llm = HuggingFaceHub(
|
121 |
-
repo_id=llm_model,
|
122 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
123 |
-
)
|
124 |
-
else:
|
125 |
-
llm = HuggingFaceHub(
|
126 |
-
repo_id=llm_model,
|
127 |
-
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
128 |
-
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
129 |
-
)
|
130 |
|
131 |
-
progress(0.75, desc="Defining buffer memory...")
|
132 |
memory = ConversationBufferMemory(
|
133 |
memory_key="chat_history",
|
134 |
output_key='answer',
|
@@ -136,7 +93,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
136 |
)
|
137 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
138 |
retriever=vector_db.as_retriever()
|
139 |
-
progress(0.8, desc="Defining retrieval chain...")
|
140 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
141 |
llm,
|
142 |
retriever=retriever,
|
@@ -147,7 +103,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
147 |
#return_generated_question=False,
|
148 |
verbose=False,
|
149 |
)
|
150 |
-
progress(0.9, desc="Done!")
|
151 |
return qa_chain
|
152 |
|
153 |
|
@@ -238,64 +193,28 @@ def demo():
|
|
238 |
vector_db = gr.State()
|
239 |
qa_chain = gr.State()
|
240 |
collection_name = gr.State()
|
241 |
-
|
242 |
-
gr.Markdown(
|
243 |
-
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
244 |
-
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
245 |
-
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
|
246 |
-
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
247 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
248 |
-
""")
|
249 |
-
with gr.Tab("Step 1 - Document pre-processing"):
|
250 |
-
with gr.Row():
|
251 |
-
document = gr.Files(value = ['/home/user/app/pdfs/Annual-Report-2022-2023-English_1.pdf'],visible=False,
|
252 |
-
height=100, file_count="multiple", file_types=["pdf"], label="Upload your PDF documents (single or multiple)")
|
253 |
-
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
254 |
-
with gr.Row():
|
255 |
-
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
256 |
-
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
257 |
-
with gr.Row():
|
258 |
-
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
259 |
-
with gr.Row():
|
260 |
-
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
261 |
-
with gr.Row():
|
262 |
-
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
263 |
-
with gr.Row():
|
264 |
-
db_btn = gr.Button("Generate vector database...")
|
265 |
-
|
266 |
-
with gr.Tab("Step 2 - QA chain initialization"):
|
267 |
-
with gr.Row():
|
268 |
-
llm_btn = gr.Radio(list_llm_simple, \
|
269 |
-
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
270 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
271 |
-
with gr.Row():
|
272 |
-
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
273 |
-
with gr.Row():
|
274 |
-
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
275 |
-
with gr.Row():
|
276 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
277 |
-
with gr.Row():
|
278 |
-
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
279 |
-
with gr.Row():
|
280 |
-
qachain_btn = gr.Button("Initialize question-answering chain...")
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
source2_page = gr.Number(label="Page", scale=1)
|
291 |
-
with gr.Row():
|
292 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
293 |
-
source3_page = gr.Number(label="Page", scale=1)
|
294 |
with gr.Row():
|
295 |
-
|
|
|
296 |
with gr.Row():
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
# Preprocessing events
|
301 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
@@ -303,7 +222,7 @@ def demo():
|
|
303 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
304 |
outputs=[vector_db, collection_name, db_progress])
|
305 |
qachain_btn.click(initialize_LLM, \
|
306 |
-
inputs=[
|
307 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
308 |
inputs=None, \
|
309 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
+
#set parameters
|
24 |
+
slider_chunk_size = 4096
|
25 |
+
slider_chunk_overlap = 256
|
26 |
+
slider_temperature = 0.1
|
27 |
+
slider_maxtokens = 2048
|
28 |
+
slider_topk = 3
|
29 |
+
llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
30 |
|
31 |
|
32 |
# default_persist_directory = './chroma_HF/'
|
|
|
80 |
|
81 |
# Initialize langchain LLM chain
|
82 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
83 |
+
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature":
|
84 |
+
temperature, "max_new_tokens":
|
85 |
+
max_tokens, "top_k": top_k,
|
86 |
+
"load_in_8bit": True})
|
87 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
89 |
memory = ConversationBufferMemory(
|
90 |
memory_key="chat_history",
|
91 |
output_key='answer',
|
|
|
93 |
)
|
94 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
95 |
retriever=vector_db.as_retriever()
|
|
|
96 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
97 |
llm,
|
98 |
retriever=retriever,
|
|
|
103 |
#return_generated_question=False,
|
104 |
verbose=False,
|
105 |
)
|
|
|
106 |
return qa_chain
|
107 |
|
108 |
|
|
|
193 |
vector_db = gr.State()
|
194 |
qa_chain = gr.State()
|
195 |
collection_name = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
document = gr.Files(value = ['/home/user/app/pdfs/Annual-Report-2022-2023-English_1.pdf'],visible=False,
|
198 |
+
height=100, file_count="multiple", file_types=["pdf"], label="Upload your PDF documents (single or multiple)")
|
199 |
+
chatbot = gr.Chatbot(height=300)
|
200 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database", visible=False)
|
201 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
202 |
+
with gr.Row():
|
203 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
204 |
+
source1_page = gr.Number(label="Page", scale=1)
|
|
|
|
|
|
|
|
|
205 |
with gr.Row():
|
206 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
207 |
+
source2_page = gr.Number(label="Page", scale=1)
|
208 |
with gr.Row():
|
209 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
210 |
+
source3_page = gr.Number(label="Page", scale=1)
|
211 |
+
with gr.Row():
|
212 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
213 |
+
with gr.Row():
|
214 |
+
db_btn = gr.Button("Generate vector database...")
|
215 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
216 |
+
submit_btn = gr.Button("Submit")
|
217 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
218 |
|
219 |
# Preprocessing events
|
220 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
|
|
222 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
223 |
outputs=[vector_db, collection_name, db_progress])
|
224 |
qachain_btn.click(initialize_LLM, \
|
225 |
+
inputs=[llm_model, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
226 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
227 |
inputs=None, \
|
228 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|