vishwask commited on
Commit
5465355
·
verified ·
1 Parent(s): 9a663f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -113
app.py CHANGED
@@ -20,6 +20,13 @@ import torch
20
  import tqdm
21
  import accelerate
22
 
 
 
 
 
 
 
 
23
 
24
 
25
  # default_persist_directory = './chroma_HF/'
@@ -73,62 +80,12 @@ def load_db():
73
 
74
  # Initialize langchain LLM chain
75
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
76
- progress(0.1, desc="Initializing HF tokenizer...")
77
- # HuggingFacePipeline uses local model
78
- # Note: it will download model locally...
79
- # tokenizer=AutoTokenizer.from_pretrained(llm_model)
80
- # progress(0.5, desc="Initializing HF pipeline...")
81
- # pipeline=transformers.pipeline(
82
- # "text-generation",
83
- # model=llm_model,
84
- # tokenizer=tokenizer,
85
- # torch_dtype=torch.bfloat16,
86
- # trust_remote_code=True,
87
- # device_map="auto",
88
- # # max_length=1024,
89
- # max_new_tokens=max_tokens,
90
- # do_sample=True,
91
- # top_k=top_k,
92
- # num_return_sequences=1,
93
- # eos_token_id=tokenizer.eos_token_id
94
- # )
95
- # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
96
-
97
- # HuggingFaceHub uses HF inference endpoints
98
- progress(0.5, desc="Initializing HF Hub...")
99
- # Use of trust_remote_code as model_kwargs
100
- # Warning: langchain issue
101
- # URL: https://github.com/langchain-ai/langchain/issues/6080
102
- if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
103
- llm = HuggingFaceHub(
104
- repo_id=llm_model,
105
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
106
- )
107
- elif llm_model == "microsoft/phi-2":
108
- raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
109
- llm = HuggingFaceHub(
110
- repo_id=llm_model,
111
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
112
- )
113
- elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
114
- llm = HuggingFaceHub(
115
- repo_id=llm_model,
116
- model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
117
- )
118
- elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
119
- raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
120
- llm = HuggingFaceHub(
121
- repo_id=llm_model,
122
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
123
- )
124
- else:
125
- llm = HuggingFaceHub(
126
- repo_id=llm_model,
127
- # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
128
- model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
129
- )
130
 
131
- progress(0.75, desc="Defining buffer memory...")
132
  memory = ConversationBufferMemory(
133
  memory_key="chat_history",
134
  output_key='answer',
@@ -136,7 +93,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
136
  )
137
  # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
138
  retriever=vector_db.as_retriever()
139
- progress(0.8, desc="Defining retrieval chain...")
140
  qa_chain = ConversationalRetrievalChain.from_llm(
141
  llm,
142
  retriever=retriever,
@@ -147,7 +103,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
147
  #return_generated_question=False,
148
  verbose=False,
149
  )
150
- progress(0.9, desc="Done!")
151
  return qa_chain
152
 
153
 
@@ -238,64 +193,28 @@ def demo():
238
  vector_db = gr.State()
239
  qa_chain = gr.State()
240
  collection_name = gr.State()
241
-
242
- gr.Markdown(
243
- """<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
244
- <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
245
- <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
246
- When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
247
- <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
248
- """)
249
- with gr.Tab("Step 1 - Document pre-processing"):
250
- with gr.Row():
251
- document = gr.Files(value = ['/home/user/app/pdfs/Annual-Report-2022-2023-English_1.pdf'],visible=False,
252
- height=100, file_count="multiple", file_types=["pdf"], label="Upload your PDF documents (single or multiple)")
253
- # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
254
- with gr.Row():
255
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
256
- with gr.Accordion("Advanced options - Document text splitter", open=False):
257
- with gr.Row():
258
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
259
- with gr.Row():
260
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
261
- with gr.Row():
262
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
263
- with gr.Row():
264
- db_btn = gr.Button("Generate vector database...")
265
-
266
- with gr.Tab("Step 2 - QA chain initialization"):
267
- with gr.Row():
268
- llm_btn = gr.Radio(list_llm_simple, \
269
- label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
270
- with gr.Accordion("Advanced options - LLM model", open=False):
271
- with gr.Row():
272
- slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
273
- with gr.Row():
274
- slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
275
- with gr.Row():
276
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
277
- with gr.Row():
278
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
279
- with gr.Row():
280
- qachain_btn = gr.Button("Initialize question-answering chain...")
281
 
282
- with gr.Tab("Step 3 - Conversation with chatbot"):
283
- chatbot = gr.Chatbot(height=300)
284
- with gr.Accordion("Advanced - Document references", open=False):
285
- with gr.Row():
286
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
287
- source1_page = gr.Number(label="Page", scale=1)
288
- with gr.Row():
289
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
290
- source2_page = gr.Number(label="Page", scale=1)
291
- with gr.Row():
292
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
293
- source3_page = gr.Number(label="Page", scale=1)
294
  with gr.Row():
295
- msg = gr.Textbox(placeholder="Type message", container=True)
 
296
  with gr.Row():
297
- submit_btn = gr.Button("Submit")
298
- clear_btn = gr.ClearButton([msg, chatbot])
 
 
 
 
 
 
 
299
 
300
  # Preprocessing events
301
  #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
@@ -303,7 +222,7 @@ def demo():
303
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
304
  outputs=[vector_db, collection_name, db_progress])
305
  qachain_btn.click(initialize_LLM, \
306
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
307
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
308
  inputs=None, \
309
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
 
20
  import tqdm
21
  import accelerate
22
 
23
+ #set parameters
24
+ slider_chunk_size = 4096
25
+ slider_chunk_overlap = 256
26
+ slider_temperature = 0.1
27
+ slider_maxtokens = 2048
28
+ slider_topk = 3
29
+ llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
30
 
31
 
32
  # default_persist_directory = './chroma_HF/'
 
80
 
81
  # Initialize langchain LLM chain
82
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
83
+ llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature":
84
+ temperature, "max_new_tokens":
85
+ max_tokens, "top_k": top_k,
86
+ "load_in_8bit": True})
87
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
 
89
  memory = ConversationBufferMemory(
90
  memory_key="chat_history",
91
  output_key='answer',
 
93
  )
94
  # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
95
  retriever=vector_db.as_retriever()
 
96
  qa_chain = ConversationalRetrievalChain.from_llm(
97
  llm,
98
  retriever=retriever,
 
103
  #return_generated_question=False,
104
  verbose=False,
105
  )
 
106
  return qa_chain
107
 
108
 
 
193
  vector_db = gr.State()
194
  qa_chain = gr.State()
195
  collection_name = gr.State()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
+ document = gr.Files(value = ['/home/user/app/pdfs/Annual-Report-2022-2023-English_1.pdf'],visible=False,
198
+ height=100, file_count="multiple", file_types=["pdf"], label="Upload your PDF documents (single or multiple)")
199
+ chatbot = gr.Chatbot(height=300)
200
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database", visible=False)
201
+ with gr.Accordion("Advanced - Document references", open=False):
202
+ with gr.Row():
203
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
204
+ source1_page = gr.Number(label="Page", scale=1)
 
 
 
 
205
  with gr.Row():
206
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
207
+ source2_page = gr.Number(label="Page", scale=1)
208
  with gr.Row():
209
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
210
+ source3_page = gr.Number(label="Page", scale=1)
211
+ with gr.Row():
212
+ msg = gr.Textbox(placeholder="Type message", container=True)
213
+ with gr.Row():
214
+ db_btn = gr.Button("Generate vector database...")
215
+ qachain_btn = gr.Button("Initialize question-answering chain...")
216
+ submit_btn = gr.Button("Submit")
217
+ clear_btn = gr.ClearButton([msg, chatbot])
218
 
219
  # Preprocessing events
220
  #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
 
222
  inputs=[document, slider_chunk_size, slider_chunk_overlap], \
223
  outputs=[vector_db, collection_name, db_progress])
224
  qachain_btn.click(initialize_LLM, \
225
+ inputs=[llm_model, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
226
  outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
227
  inputs=None, \
228
  outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \