vishwask commited on
Commit
77cb298
·
verified ·
1 Parent(s): 5bfed36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -129,7 +129,7 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.P
129
 
130
  progress(0.75, desc="Defining buffer memory...")
131
  #memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
132
- memory = ConversationBufferWindowMemory(memory_key = 'history', k=3)
133
  retriever=vector_db.as_retriever()
134
  progress(0.8, desc="Defining retrieval chain...")
135
  qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
@@ -176,20 +176,20 @@ def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Pr
176
  return qa_chain, "Complete!"
177
 
178
 
179
- def format_chat_history(message, history):
180
  formatted_chat_history = []
181
- for user_message, bot_message in history:
182
  formatted_chat_history.append(f"User: {user_message}")
183
  formatted_chat_history.append(f"Assistant: {bot_message}")
184
  return formatted_chat_history
185
 
186
 
187
- def conversation(qa_chain, message, history):
188
- formatted_chat_history = format_chat_history(message, history)
189
  #print("formatted_chat_history",formatted_chat_history)
190
 
191
  # Generate response using QA chain
192
- response = qa_chain({"question": message, "history": formatted_chat_history})
193
  response_answer = response["answer"]
194
  if response_answer.find("Helpful Answer:") != -1:
195
  response_answer = response_answer.split("Helpful Answer:")[-1]
 
129
 
130
  progress(0.75, desc="Defining buffer memory...")
131
  #memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
132
+ memory = ConversationBufferWindowMemory(memory_key = 'chat_history', k=3)
133
  retriever=vector_db.as_retriever()
134
  progress(0.8, desc="Defining retrieval chain...")
135
  qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
 
176
  return qa_chain, "Complete!"
177
 
178
 
179
+ def format_chat_history(message, chat_history):
180
  formatted_chat_history = []
181
+ for user_message, bot_message in chat_history:
182
  formatted_chat_history.append(f"User: {user_message}")
183
  formatted_chat_history.append(f"Assistant: {bot_message}")
184
  return formatted_chat_history
185
 
186
 
187
+ def conversation(qa_chain, message, chat_history):
188
+ formatted_chat_history = format_chat_history(message, chat_history)
189
  #print("formatted_chat_history",formatted_chat_history)
190
 
191
  # Generate response using QA chain
192
+ response = qa_chain({"question": message, "chat_history": formatted_chat_history})
193
  response_answer = response["answer"]
194
  if response_answer.find("Helpful Answer:") != -1:
195
  response_answer = response_answer.split("Helpful Answer:")[-1]