vishwask commited on
Commit
ab53318
·
verified ·
1 Parent(s): ccb265b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -139,30 +139,33 @@ def conversation(qa_chain, message, history):
139
  # Append user message and response to chat history
140
  new_history = history + [(message, response_answer)]
141
  # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
142
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
143
 
144
  #document = os.listdir(list_file_obj)
145
- vector_db, collection_name = initialize_database(list_file_obj)
146
  #qa_chain =
147
 
148
- # Initialize langchain LLM chain
149
- llm = HuggingFaceHub(repo_id = llm_model,
150
- model_kwargs={"temperature": temperature,
151
- "max_new_tokens": max_tokens,
152
- "top_k": top_k,
153
- "load_in_8bit": True})
154
- retriever=vector_db.as_retriever()
155
- memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
156
- qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
157
- memory=memory,return_source_documents=True,verbose=False,)
158
 
159
- print('qa chain and vector_db done')
160
 
161
  def demo():
162
  with gr.Blocks(theme='base') as demo:
163
- #vector_db = gr.State()
164
- #qa_chain = gr.State()
165
- #collection_name = gr.State()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
  chatbot = gr.Chatbot(height=300)
168
  with gr.Accordion('References', open=True):
 
139
  # Append user message and response to chat history
140
  new_history = history + [(message, response_answer)]
141
  # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
142
+ return qa_chain, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
143
 
144
  #document = os.listdir(list_file_obj)
 
145
  #qa_chain =
146
 
 
 
 
 
 
 
 
 
 
 
147
 
148
+
149
 
150
  def demo():
151
  with gr.Blocks(theme='base') as demo:
152
+ vector_db = gr.State()
153
+ qa_chain = gr.State()
154
+ collection_name = gr.State()
155
+
156
+
157
+ vector_db, collection_name = initialize_database(list_file_obj)
158
+
159
+ # Initialize langchain LLM chain
160
+ llm = HuggingFaceHub(repo_id = llm_model,
161
+ model_kwargs={"temperature": temperature,
162
+ "max_new_tokens": max_tokens,
163
+ "top_k": top_k,
164
+ "load_in_8bit": True})
165
+ retriever=vector_db.as_retriever()
166
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
167
+ qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
168
+ memory=memory,return_source_documents=True,verbose=False,)
169
 
170
  chatbot = gr.Chatbot(height=300)
171
  with gr.Accordion('References', open=True):