Update app.py
Browse files
app.py
CHANGED
@@ -20,13 +20,6 @@ import torch
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
-
#set parameters
|
24 |
-
slider_chunk_size = 4096
|
25 |
-
slider_chunk_overlap = 256
|
26 |
-
slider_temperature = 0.1
|
27 |
-
slider_maxtokens = 2048
|
28 |
-
slider_topk = 3
|
29 |
-
llm_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
30 |
|
31 |
|
32 |
# default_persist_directory = './chroma_HF/'
|
@@ -79,13 +72,63 @@ def load_db():
|
|
79 |
|
80 |
|
81 |
# Initialize langchain LLM chain
|
82 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
89 |
memory = ConversationBufferMemory(
|
90 |
memory_key="chat_history",
|
91 |
output_key='answer',
|
@@ -93,6 +136,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
93 |
)
|
94 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
95 |
retriever=vector_db.as_retriever()
|
|
|
96 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
97 |
llm,
|
98 |
retriever=retriever,
|
@@ -103,14 +147,16 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
103 |
#return_generated_question=False,
|
104 |
verbose=False,
|
105 |
)
|
|
|
106 |
return qa_chain
|
107 |
|
108 |
|
109 |
# Initialize database
|
110 |
-
def initialize_database(list_file_obj, chunk_size, chunk_overlap):
|
111 |
# Create list of documents (when valid)
|
112 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
113 |
# Create collection_name for vector database
|
|
|
114 |
collection_name = Path(list_file_path[0]).stem
|
115 |
# Fix potential issues from naming convention
|
116 |
## Remove space
|
@@ -124,20 +170,23 @@ def initialize_database(list_file_obj, chunk_size, chunk_overlap):
|
|
124 |
collection_name[-1] = 'Z'
|
125 |
# print('list_file_path: ', list_file_path)
|
126 |
print('Collection name: ', collection_name)
|
|
|
127 |
# Load document and create splits
|
128 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
129 |
# Create or load vector database
|
|
|
130 |
# global vector_db
|
131 |
vector_db = create_db(doc_splits, collection_name)
|
132 |
-
|
|
|
133 |
|
134 |
|
135 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
136 |
# print("llm_option",llm_option)
|
137 |
llm_name = list_llm[llm_option]
|
138 |
print("llm_name: ",llm_name)
|
139 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
140 |
-
return qa_chain
|
141 |
|
142 |
|
143 |
def format_chat_history(message, chat_history):
|
@@ -171,7 +220,7 @@ def conversation(qa_chain, message, history):
|
|
171 |
# Append user message and response to chat history
|
172 |
new_history = history + [(message, response_answer)]
|
173 |
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
174 |
-
return qa_chain, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
175 |
|
176 |
|
177 |
def upload_file(file_obj):
|
@@ -189,35 +238,71 @@ def demo():
|
|
189 |
vector_db = gr.State()
|
190 |
qa_chain = gr.State()
|
191 |
collection_name = gr.State()
|
192 |
-
|
193 |
-
|
194 |
-
chatbot
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
with gr.Row():
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
with gr.Row():
|
201 |
-
|
202 |
-
source2_page = gr.Number(label="Page", scale=1)
|
203 |
with gr.Row():
|
204 |
-
|
205 |
-
|
206 |
-
with gr.Row():
|
207 |
-
msg = gr.Textbox(placeholder="Type message", container=True)
|
208 |
-
with gr.Row():
|
209 |
-
db_btn = gr.Button("Generate vector database...")
|
210 |
-
qachain_btn = gr.Button("Initialize question-answering chain...")
|
211 |
-
submit_btn = gr.Button("Submit")
|
212 |
-
clear_btn = gr.ClearButton([msg, chatbot])
|
213 |
|
214 |
# Preprocessing events
|
215 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
216 |
db_btn.click(initialize_database, \
|
217 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
218 |
-
outputs=[vector_db, collection_name])
|
219 |
qachain_btn.click(initialize_LLM, \
|
220 |
-
inputs=[
|
221 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
222 |
inputs=None, \
|
223 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
|
20 |
import tqdm
|
21 |
import accelerate
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# default_persist_directory = './chroma_HF/'
|
|
|
72 |
|
73 |
|
74 |
# Initialize langchain LLM chain
|
75 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
76 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
77 |
+
# HuggingFacePipeline uses local model
|
78 |
+
# Note: it will download model locally...
|
79 |
+
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
80 |
+
# progress(0.5, desc="Initializing HF pipeline...")
|
81 |
+
# pipeline=transformers.pipeline(
|
82 |
+
# "text-generation",
|
83 |
+
# model=llm_model,
|
84 |
+
# tokenizer=tokenizer,
|
85 |
+
# torch_dtype=torch.bfloat16,
|
86 |
+
# trust_remote_code=True,
|
87 |
+
# device_map="auto",
|
88 |
+
# # max_length=1024,
|
89 |
+
# max_new_tokens=max_tokens,
|
90 |
+
# do_sample=True,
|
91 |
+
# top_k=top_k,
|
92 |
+
# num_return_sequences=1,
|
93 |
+
# eos_token_id=tokenizer.eos_token_id
|
94 |
+
# )
|
95 |
+
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
96 |
+
|
97 |
+
# HuggingFaceHub uses HF inference endpoints
|
98 |
+
progress(0.5, desc="Initializing HF Hub...")
|
99 |
+
# Use of trust_remote_code as model_kwargs
|
100 |
+
# Warning: langchain issue
|
101 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
102 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
103 |
+
llm = HuggingFaceHub(
|
104 |
+
repo_id=llm_model,
|
105 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
106 |
+
)
|
107 |
+
elif llm_model == "microsoft/phi-2":
|
108 |
+
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
109 |
+
llm = HuggingFaceHub(
|
110 |
+
repo_id=llm_model,
|
111 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
112 |
+
)
|
113 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
114 |
+
llm = HuggingFaceHub(
|
115 |
+
repo_id=llm_model,
|
116 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
117 |
+
)
|
118 |
+
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
119 |
+
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
120 |
+
llm = HuggingFaceHub(
|
121 |
+
repo_id=llm_model,
|
122 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
llm = HuggingFaceHub(
|
126 |
+
repo_id=llm_model,
|
127 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
128 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
129 |
+
)
|
130 |
|
131 |
+
progress(0.75, desc="Defining buffer memory...")
|
132 |
memory = ConversationBufferMemory(
|
133 |
memory_key="chat_history",
|
134 |
output_key='answer',
|
|
|
136 |
)
|
137 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
138 |
retriever=vector_db.as_retriever()
|
139 |
+
progress(0.8, desc="Defining retrieval chain...")
|
140 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
141 |
llm,
|
142 |
retriever=retriever,
|
|
|
147 |
#return_generated_question=False,
|
148 |
verbose=False,
|
149 |
)
|
150 |
+
progress(0.9, desc="Done!")
|
151 |
return qa_chain
|
152 |
|
153 |
|
154 |
# Initialize database
|
155 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
156 |
# Create list of documents (when valid)
|
157 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
158 |
# Create collection_name for vector database
|
159 |
+
progress(0.1, desc="Creating collection name...")
|
160 |
collection_name = Path(list_file_path[0]).stem
|
161 |
# Fix potential issues from naming convention
|
162 |
## Remove space
|
|
|
170 |
collection_name[-1] = 'Z'
|
171 |
# print('list_file_path: ', list_file_path)
|
172 |
print('Collection name: ', collection_name)
|
173 |
+
progress(0.25, desc="Loading document...")
|
174 |
# Load document and create splits
|
175 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
176 |
# Create or load vector database
|
177 |
+
progress(0.5, desc="Generating vector database...")
|
178 |
# global vector_db
|
179 |
vector_db = create_db(doc_splits, collection_name)
|
180 |
+
progress(0.9, desc="Done!")
|
181 |
+
return vector_db, collection_name, "Complete!"
|
182 |
|
183 |
|
184 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
185 |
# print("llm_option",llm_option)
|
186 |
llm_name = list_llm[llm_option]
|
187 |
print("llm_name: ",llm_name)
|
188 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
189 |
+
return qa_chain, "Complete!"
|
190 |
|
191 |
|
192 |
def format_chat_history(message, chat_history):
|
|
|
220 |
# Append user message and response to chat history
|
221 |
new_history = history + [(message, response_answer)]
|
222 |
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
223 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
224 |
|
225 |
|
226 |
def upload_file(file_obj):
|
|
|
238 |
vector_db = gr.State()
|
239 |
qa_chain = gr.State()
|
240 |
collection_name = gr.State()
|
241 |
+
|
242 |
+
gr.Markdown(
|
243 |
+
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
244 |
+
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
245 |
+
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
|
246 |
+
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
247 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
248 |
+
""")
|
249 |
+
with gr.Tab("Step 1 - Document pre-processing"):
|
250 |
+
with gr.Row():
|
251 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
252 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
253 |
+
with gr.Row():
|
254 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
255 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
256 |
+
with gr.Row():
|
257 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
258 |
+
with gr.Row():
|
259 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
260 |
with gr.Row():
|
261 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
262 |
+
with gr.Row():
|
263 |
+
db_btn = gr.Button("Generate vector database...")
|
264 |
+
|
265 |
+
with gr.Tab("Step 2 - QA chain initialization"):
|
266 |
+
with gr.Row():
|
267 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
268 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
269 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
270 |
+
with gr.Row():
|
271 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
272 |
+
with gr.Row():
|
273 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
274 |
+
with gr.Row():
|
275 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
276 |
+
with gr.Row():
|
277 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
278 |
+
with gr.Row():
|
279 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
280 |
+
|
281 |
+
with gr.Tab("Step 3 - Conversation with chatbot"):
|
282 |
+
chatbot = gr.Chatbot(height=300)
|
283 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
284 |
+
with gr.Row():
|
285 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
286 |
+
source1_page = gr.Number(label="Page", scale=1)
|
287 |
+
with gr.Row():
|
288 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
289 |
+
source2_page = gr.Number(label="Page", scale=1)
|
290 |
+
with gr.Row():
|
291 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
292 |
+
source3_page = gr.Number(label="Page", scale=1)
|
293 |
with gr.Row():
|
294 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
|
|
295 |
with gr.Row():
|
296 |
+
submit_btn = gr.Button("Submit")
|
297 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
# Preprocessing events
|
300 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
301 |
db_btn.click(initialize_database, \
|
302 |
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
303 |
+
outputs=[vector_db, collection_name, db_progress])
|
304 |
qachain_btn.click(initialize_LLM, \
|
305 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
306 |
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
307 |
inputs=None, \
|
308 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|