File size: 8,240 Bytes
9b2cf74
 
 
 
 
 
 
 
 
 
49eb64d
 
 
9b2cf74
ff1387c
 
 
 
086e91e
ff1387c
 
 
 
 
 
 
 
62b998d
 
 
 
 
 
 
 
 
c301de7
 
 
 
 
 
62b998d
 
 
ff1387c
 
44c04c7
 
 
9b2cf74
 
 
c301de7
 
b22f824
c301de7
b22f824
c301de7
 
 
b22f824
c301de7
b22f824
c301de7
 
 
9b2cf74
 
 
ff1387c
9b2cf74
62b998d
ff1387c
 
44c04c7
 
 
 
 
9b2cf74
 
 
 
44c04c7
6e145af
44c04c7
6e145af
62b998d
 
 
 
6e145af
44c04c7
 
6e145af
 
44c04c7
9b2cf74
6e145af
 
 
 
 
 
9b2cf74
6e145af
 
44c04c7
 
 
62b998d
44c04c7
 
 
 
62b998d
44c04c7
9b2cf74
44c04c7
 
 
62b998d
44c04c7
6e145af
44c04c7
 
 
6e145af
44c04c7
9b2cf74
6e145af
9b2cf74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b998d
9b2cf74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import gradio.themes.base

from utils import *
from data_utils import *

from datasets import load_dataset

ds = load_dataset("visionLMsftw/vibe-testing-samples", split="train")
evaluation_data = get_evaluation_data(ds)
ds_results = load_dataset("visionLMsftw/vibe-testing-results", split="train")
models = get_model_names(ds_results)
responses = get_responses(ds_results)

model_params = {
    "Qwen/Qwen2.5-VL-32B-Instruct": 32,
    "google/gemma-3-27b-it": 27,
    "meta-llama/Llama-4-Maverick-17B-128E-Instruct": 17,
    "Qwen/Qwen2.5-VL-7B-Instruct": 7,
    "HuggingFaceTB/SmolVLM2-2.2B-Instruct": 2.2,
}

def filter_models_by_param(min_params):
    filtered_models = [m for m, p in model_params.items() if p >= min_params]
    selected = filtered_models[0] if filtered_models else None
    return gr.update(choices=filtered_models, value=selected)

def display_model_details(model_name):
    if model_name not in model_params:
        return "No info available."

    size = model_params[model_name]
    provider = model_name.split("/")[0] if "/" in model_name else "Unknown"
    link = f"https://huggingface.co/{model_name}"

    return f"""
    <div style="margin-top: 10px; font-size: 14px; display: flex; gap: 12px; align-items: center; flex-wrap: wrap;">
        <span><strong>Provider:</strong> {provider}</span>
        <span style="color: #999;">|</span>
        <span><strong>Size:</strong> {size}B</span>
        <span style="color: #999;">|</span>
        <span><strong>Link:</strong> <a href="{link}" target="_blank">{model_name}</a></span>
    </div>
    """

models = list(model_params.keys())

default_category = evaluation_data[0]["category"]
default_example_id = evaluation_data[0]["id"]


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# VLMVibeEval")
    gr.Markdown(
        """
        A lightweight leaderboard for evaluating Vision Language Models (VLMs) β€” based on vibes. 🌞

        Traditional benchmarks don't give concrete signal for your use case and models are often saturated over them. Instead, we let you **vibe test** models across curated, in-the-wild examples:
        
        1. Predefined categories with images and prompts.
        2. Check any model on these examples.
        3. Explore the generations and judge for yourself, as different models have different styles and strengths. πŸ—£οΈ

        This is not about scores β€” it's about *how it feels*. You can submit new models in the community tab and we'll shortly update the app! πŸ€—
        """
    )

    mode = gr.Radio(["View model-wise responses", "Compare model responses on a specific example"], label="Mode", value="View model-wise responses")

    with gr.Column(visible=True) as model_mode:
        param_slider = gr.Slider(minimum=2, maximum=32, step=1, label="Minimum model parameters (B)")
        selected_model = gr.Dropdown(models, label="Choose model")
        model_info_box = gr.HTML()

        param_slider.change(filter_models_by_param, inputs=param_slider, outputs=selected_model)
        model_category = gr.Dropdown(
            choices=list(set(ex["category"] for ex in evaluation_data)),
            label="Category",
            value=default_category
        )
        model_output = gr.HTML()
        current_index = gr.State(value=0)
        current_html = gr.State(value="")

        def load_initial(model, category):
            filtered_data = [ex for ex in evaluation_data if ex["category"] == category]
            html = display_model_responses_html(evaluation_data, responses, model, start_index=0, batch_size=5, category=category)
            has_more = 5 < len(filtered_data)

            model_info_html = display_model_details(model)
            
            return html, 5, html, gr.update(visible=has_more), model_info_html

        
        def load_more(model, index, html_so_far, category):
            filtered_data = [ex for ex in evaluation_data if ex["category"] == category]
        
            new_html = display_model_responses_html(evaluation_data, responses, model, start_index=index, batch_size=5, category=category)
            updated_html = html_so_far + new_html
        
            new_index = index + 5
            has_more = new_index < len(filtered_data)
        
            return updated_html, new_index, updated_html, gr.update(visible=has_more)


        more_button = gr.Button("Load more")
        
        selected_model.change(
            load_initial,
            inputs=[selected_model, model_category],
            outputs=[model_output, current_index, current_html, more_button, model_info_box]
        )
        model_category.change(
            load_initial,
            inputs=[selected_model, model_category],
            outputs=[model_output, current_index, current_html, more_button, model_info_box]
        )

        demo.load(
            load_initial,
            inputs=[selected_model, model_category],
            outputs=[model_output, current_index, current_html, more_button, model_info_box]
        )
        
        more_button.click(
            load_more,
            inputs=[selected_model, current_index, current_html, model_category],
            outputs=[model_output, current_index, current_html, more_button]
        )


    with gr.Column(visible=False) as example_mode:
        category = gr.Dropdown(
            choices=list(set(ex["category"] for ex in evaluation_data)),
            label="Category",
            value=default_category
        )
        example = gr.Dropdown(
            label="Example",
            value=default_example_id,
            choices=get_examples_by_category(evaluation_data, default_category)
        )
        example_display = gr.HTML()

    category.change(lambda c: gr.update(choices=get_examples_by_category(evaluation_data, c)), category, example)
    example.change(
        fn=lambda ex_id: display_example_responses_html(evaluation_data, responses, models, ex_id),
        inputs=example,
        outputs=example_display
    )

    demo.load(fn=lambda: display_example_responses_html(evaluation_data, responses, models, default_example_id), inputs=None, outputs=example_display)

    def switch_mode(selected):
        return {
            model_mode: gr.update(visible=selected == "View model-wise responses"),
            example_mode: gr.update(visible=selected == "Compare model responses on a specific example"),
        }

    mode.change(switch_mode, mode, [model_mode, example_mode])
    gr.HTML(r"""
        <style>
        #image-modal {
            display: none;
            position: fixed;
            z-index: 999;
            left: 0; top: 0;
            width: 100%; height: 100%;
            background-color: rgba(0, 0, 0, 0.8);
            align-items: center;
            justify-content: center;
        }
        #image-modal img {
            max-width: 90%;
            max-height: 90%;
            border-radius: 8px;
            box-shadow: 0 0 20px rgba(255,255,255,0.3);
        }
        #image-modal .close {
            position: absolute;
            top: 20px; right: 30px;
            font-size: 32px;
            color: #fff;
            cursor: pointer;
            font-weight: bold;
        }
        </style>
        <div id="image-modal" onclick="closeModal(event)">
        <span class="close" onclick="closeModal(event)">&times;</span>
        <img id="modal-img" src="" alt="Enlarged Image" />
        </div>
        
        <script>
        function openImage(src) {
            const modal = document.getElementById('image-modal');
            const img = document.getElementById('modal-img');
            img.src = src;
            modal.style.display = 'flex';
        }
        function closeModal(event) {
            if (event.target.id === 'image-modal' || event.target.classList.contains('close')) {
            document.getElementById('image-modal').style.display = 'none';
            }
        }
        // Optional: close on ESC key
        document.addEventListener('keydown', function(e) {
            if (e.key === "Escape") {
            document.getElementById('image-modal').style.display = 'none';
            }
        });
        </script>
        """)

demo.launch()