Spaces:
Running
Running
File size: 18,230 Bytes
0d95f10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
import comfy.model_management
import comfy.conds
import comfy.ops
from enum import Enum
from . import utils
class ModelType(Enum):
EPS = 1
V_PREDICTION = 2
V_PREDICTION_EDM = 3
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM
def model_sampling(model_config, model_type):
s = ModelSamplingDiscrete
if model_type == ModelType.EPS:
c = EPS
elif model_type == ModelType.V_PREDICTION:
c = V_PREDICTION
elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION
s = ModelSamplingContinuousEDM
class ModelSampling(s, c):
pass
return ModelSampling(model_config)
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__()
unet_config = model_config.unet_config
self.latent_format = model_config.latent_format
self.model_config = model_config
self.manual_cast_dtype = model_config.manual_cast_dtype
if not unet_config.get("disable_unet_model_creation", False):
if self.manual_cast_dtype is not None:
operations = comfy.ops.manual_cast
else:
operations = comfy.ops.disable_weight_init
self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
self.model_type = model_type
self.model_sampling = model_sampling(model_config, model_type)
self.adm_channels = unet_config.get("adm_in_channels", None)
if self.adm_channels is None:
self.adm_channels = 0
self.inpaint_model = False
print("model_type", model_type.name)
print("adm", self.adm_channels)
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t
xc = self.model_sampling.calculate_input(sigma, x)
if c_concat is not None:
xc = torch.cat([xc] + [c_concat], dim=1)
context = c_crossattn
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
xc = xc.to(dtype)
t = self.model_sampling.timestep(t).float()
context = context.to(dtype)
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra_conds[o] = extra
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
return self.model_sampling.calculate_denoised(sigma, model_output, x)
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
def encode_adm(self, **kwargs):
return None
def extra_conds(self, **kwargs):
out = {}
if self.inpaint_model:
concat_keys = ("mask", "masked_image")
cond_concat = []
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
concat_latent_image = kwargs.get("concat_latent_image", None)
if concat_latent_image is None:
concat_latent_image = kwargs.get("latent_image", None)
else:
concat_latent_image = self.process_latent_in(concat_latent_image)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
if len(denoise_mask.shape) == len(noise.shape):
denoise_mask = denoise_mask[:,:1]
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
if denoise_mask.shape[-2:] != noise.shape[-2:]:
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
blank_image[:,0] *= 0.8223
blank_image[:,1] *= -0.6876
blank_image[:,2] *= 0.6364
blank_image[:,3] *= 0.1380
return blank_image
for ck in concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask.to(device))
elif ck == "masked_image":
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
elif ck == "masked_image":
cond_concat.append(blank_inpaint_image_like(noise))
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
def load_model_weights(self, sd, unet_prefix=""):
to_load = {}
keys = list(sd.keys())
for k in keys:
if k.startswith(unet_prefix):
to_load[k[len(unet_prefix):]] = sd.pop(k)
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
if len(m) > 0:
print("unet missing:", m)
if len(u) > 0:
print("unet unexpected:", u)
del to_load
return self
def process_latent_in(self, latent):
return self.latent_format.process_in(latent)
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
extra_sds = []
if clip_state_dict is not None:
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
if vae_state_dict is not None:
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
if clip_vision_state_dict is not None:
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.get_dtype() == torch.float16:
extra_sds = map(lambda sd: utils.convert_sd_to(sd, torch.float16), extra_sds)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
for sd in extra_sds:
unet_state_dict.update(sd)
return unet_state_dict
def set_inpaint(self):
self.inpaint_model = True
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * input_shape[2] * input_shape[3]
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = []
weights = []
noise_aug = []
for unclip_cond in unclip_conditioning:
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
weight = unclip_cond["strength"]
noise_augment = unclip_cond["noise_augmentation"]
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
weights.append(weight)
noise_aug.append(noise_augment)
adm_inputs.append(adm_out)
if len(noise_aug) > 1:
adm_out = torch.stack(adm_inputs).sum(0)
noise_augment = noise_augment_merge
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
adm_out = torch.cat((c_adm, noise_level_emb), 1)
return adm_out
class SD21UNCLIP(BaseModel):
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
def encode_adm(self, **kwargs):
unclip_conditioning = kwargs.get("unclip_conditioning", None)
device = kwargs["device"]
if unclip_conditioning is None:
return torch.zeros((1, self.adm_channels))
else:
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
def sdxl_pooled(args, noise_augmentor):
if "unclip_conditioning" in args:
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
else:
return args["pooled_output"]
class SDXLRefiner(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
if kwargs.get("prompt_type", "") == "negative":
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
else:
aesthetic_score = kwargs.get("aesthetic_score", 6)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([aesthetic_score])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SDXL(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
def encode_adm(self, **kwargs):
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SVD_img2vid(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder = Timestep(256)
def encode_adm(self, **kwargs):
fps_id = kwargs.get("fps", 6) - 1
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
augmentation = kwargs.get("augmentation_level", 0)
out = []
out.append(self.embedder(torch.Tensor([fps_id])))
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
out.append(self.embedder(torch.Tensor([augmentation])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
return flat
def extra_conds(self, **kwargs):
out = {}
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
latent_image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if latent_image is None:
latent_image = torch.zeros_like(noise)
if latent_image.shape[1:] != noise.shape[1:]:
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
if "time_conditioning" in kwargs:
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
return out
class Stable_Zero123(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
super().__init__(model_config, model_type, device=device)
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
self.cc_projection.weight.copy_(cc_projection_weight)
self.cc_projection.bias.copy_(cc_projection_bias)
def extra_conds(self, **kwargs):
out = {}
latent_image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if latent_image is None:
latent_image = torch.zeros_like(noise)
if latent_image.shape[1:] != noise.shape[1:]:
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
if cross_attn.shape[-1] != 768:
cross_attn = self.cc_projection(cross_attn)
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
class SD_X4Upscaler(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
def extra_conds(self, **kwargs):
out = {}
image = kwargs.get("concat_image", None)
noise = kwargs.get("noise", None)
noise_augment = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
seed = kwargs["seed"] - 10
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
if image is None:
image = torch.zeros_like(noise)[:,:3]
if image.shape[1:] != noise.shape[1:]:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
noise_level = torch.tensor([noise_level], device=device)
if noise_augment > 0:
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
image = utils.resize_to_batch_size(image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
out['y'] = comfy.conds.CONDRegular(noise_level)
return out
|