Spaces:
Running
Running
File size: 41,572 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
import math
from typing import Iterable, Tuple, Union
import re
import torch
from einops import rearrange, repeat
from torch import Tensor, nn
from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
from comfy.model_patcher import ModelPatcher
from comfy.ldm.modules.diffusionmodules import openaimodel
from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer
from comfy.controlnet import broadcast_image_to
from comfy.utils import repeat_to_batch_size
import comfy.ops
import comfy.model_management
from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows
from .utils_motion import CrossAttentionMM, MotionCompatibilityError, extend_to_batch_size, prepare_mask_batch
from .utils_model import BetaSchedules, ModelTypeSD
from .logger import logger
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class AnimateDiffFormat:
ANIMATEDIFF = "AnimateDiff"
HOTSHOTXL = "HotshotXL"
ANIMATELCM = "AnimateLCM"
class AnimateDiffVersion:
V1 = "v1"
V2 = "v2"
V3 = "v3"
class AnimateDiffInfo:
def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str):
self.sd_type = sd_type
self.mm_format = mm_format
self.mm_version = mm_version
self.mm_name = mm_name
def get_string(self):
return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}"
def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool:
# use pos_encoder naming to determine if hotshotxl model
for key in mm_state_dict.keys():
if key.endswith("pos_encoder.positional_encoding"):
return True
return False
def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool:
# use lack of ANY pos_encoder keys to determine if animatelcm model
for key in mm_state_dict.keys():
if "pos_encoder" in key:
return False
return True
def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
# keep track of biggest down_block count in module
biggest_block = 0
for key in mm_state_dict.keys():
if "down_blocks" in key:
try:
block_int = key.split(".")[1]
block_num = int(block_int)
if block_num > biggest_block:
biggest_block = block_num
except ValueError:
pass
return biggest_block
def has_mid_block(mm_state_dict: dict[str, Tensor]):
# check if keys contain mid_block
for key in mm_state_dict.keys():
if key.startswith("mid_block."):
return True
return False
def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]:
# use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
for key in mm_state_dict.keys():
if key.endswith("pos_encoder.pe"):
return mm_state_dict[key].size(1) # get middle dim
# AnimateLCM models should have no pos_encoder entries, and assumed to be 64
if mm_format == AnimateDiffFormat.ANIMATELCM:
return 64
raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!")
_regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.')
def find_hotshot_module_num(key: str) -> Union[int, None]:
found = _regex_hotshotxl_module_num.search(key)
if found:
return int(found.group(1))
return None
def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]:
# from pathlib import Path
# with open(Path(__file__).parent.parent.parent / f"keys_{mm_name}.txt", "w") as afile:
# for key, value in mm_state_dict.items():
# afile.write(f"{key}:\t{value.shape}\n")
# remove all non-temporal keys (in case model has extra stuff in it)
for key in list(mm_state_dict.keys()):
if "temporal" not in key:
del mm_state_dict[key]
# determine what SD model the motion module is intended for
sd_type: str = None
down_block_max = get_down_block_max(mm_state_dict)
if down_block_max == 3:
sd_type = ModelTypeSD.SD1_5
elif down_block_max == 2:
sd_type = ModelTypeSD.SDXL
else:
raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.")
# determine the model's format
mm_format = AnimateDiffFormat.ANIMATEDIFF
if is_hotshotxl(mm_state_dict):
mm_format = AnimateDiffFormat.HOTSHOTXL
if is_animatelcm(mm_state_dict):
mm_format = AnimateDiffFormat.ANIMATELCM
# determine the model's version
mm_version = AnimateDiffVersion.V1
if has_mid_block(mm_state_dict):
mm_version = AnimateDiffVersion.V2
elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32:
mm_version = AnimateDiffVersion.V3
info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name)
# convert to AnimateDiff format, if needed
if mm_format == AnimateDiffFormat.HOTSHOTXL:
# HotshotXL is AD-based architecture applied to SDXL instead of SD1.5
# By renaming the keys, no code needs to be adapted at all
#
# reformat temporal_attentions:
# HSXL: temporal_attentions.#.
# AD: motion_modules.#.temporal_transformer.
# HSXL: pos_encoder.positional_encoding
# AD: pos_encoder.pe
for key in list(mm_state_dict.keys()):
module_num = find_hotshot_module_num(key)
if module_num is not None:
new_key = key.replace(f"temporal_attentions.{module_num}",
f"motion_modules.{module_num}.temporal_transformer", 1)
new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe")
mm_state_dict[new_key] = mm_state_dict[key]
del mm_state_dict[key]
# return adjusted mm_state_dict and info
return mm_state_dict, info
class BlockType:
UP = "up"
DOWN = "down"
MID = "mid"
class AnimateDiffModel(nn.Module):
def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo):
super().__init__()
self.mm_info = mm_info
self.down_blocks: Iterable[MotionModule] = nn.ModuleList([])
self.up_blocks: Iterable[MotionModule] = nn.ModuleList([])
self.mid_block: Union[MotionModule, None] = None
self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format)
self.has_position_encoding = self.encoding_max_len is not None
# determine ops to use (to support fp8 properly)
if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None:
ops = comfy.ops.disable_weight_init
else:
ops = comfy.ops.manual_cast
# SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks
if mm_info.sd_type == ModelTypeSD.SDXL:
layer_channels = (320, 640, 1280)
else:
layer_channels = (320, 640, 1280, 1280)
# fill out down/up blocks and middle block, if present
for c in layer_channels:
self.down_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding,
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops))
for c in reversed(layer_channels):
self.up_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding,
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops))
if has_mid_block(mm_state_dict):
self.mid_block = MotionModule(1280, temporal_position_encoding=self.has_position_encoding,
temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops)
self.AD_video_length: int = 24
def get_device_debug(self):
return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device
def is_length_valid_for_encoding_max_len(self, length: int):
if self.encoding_max_len is None:
return True
return length <= self.encoding_max_len
def get_best_beta_schedule(self, log=False) -> str:
to_return = None
if self.mm_info.sd_type == ModelTypeSD.SD1_5:
if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM:
to_return = BetaSchedules.LCM # while LCM_100 is the intended schedule, I find LCM to have much less flicker
else:
to_return = BetaSchedules.SQRT_LINEAR
elif self.mm_info.sd_type == ModelTypeSD.SDXL:
if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL:
to_return = BetaSchedules.LINEAR
else:
to_return = BetaSchedules.LINEAR_ADXL
if to_return is not None:
if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}")
else:
to_return = BetaSchedules.USE_EXISTING
if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'")
return to_return
def cleanup(self):
pass
def inject(self, model: ModelPatcher):
unet: openaimodel.UNetModel = model.model.diffusion_model
# inject input (down) blocks
# SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total
# SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total
self._inject(unet.input_blocks, self.down_blocks)
# inject output (up) blocks
# SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total
# SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total
self._inject(unet.output_blocks, self.up_blocks)
# inject mid block, if needed (encapsulate in list to make structure compatible)
if self.mid_block is not None:
self._inject([unet.middle_block], [self.mid_block])
del unet
def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
# Rules for injection:
# For each component list in a unet block:
# if SpatialTransformer exists in list, place next block after last occurrence
# elif ResBlock exists in list, place next block after first occurrence
# else don't place block
injection_count = 0
unet_idx = 0
# details about blocks passed in
per_block = len(mm_blocks[0].motion_modules)
injection_goal = len(mm_blocks) * per_block
# only stop injecting when modules exhausted
while injection_count < injection_goal:
# figure out which VanillaTemporalModule from mm to inject
mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
# figure out layout of unet block components
st_idx = -1 # SpatialTransformer index
res_idx = -1 # first ResBlock index
# first, figure out indeces of relevant blocks
for idx, component in enumerate(unet_blocks[unet_idx]):
if type(component) == SpatialTransformer:
st_idx = idx
elif type(component).__name__ == "ResBlock" and res_idx < 0:
res_idx = idx
# if SpatialTransformer exists, inject right after
if st_idx >= 0:
#logger.info(f"AD: injecting after ST({st_idx})")
unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# otherwise, if only ResBlock exists, inject right after
elif res_idx >= 0:
#logger.info(f"AD: injecting after Res({res_idx})")
unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
injection_count += 1
# increment unet_idx
unet_idx += 1
def eject(self, model: ModelPatcher):
unet: openaimodel.UNetModel = model.model.diffusion_model
# remove from input blocks (downblocks)
self._eject(unet.input_blocks)
# remove from output blocks (upblocks)
self._eject(unet.output_blocks)
# remove from middle block (encapsulate in list to make compatible)
self._eject([unet.middle_block])
del unet
def _eject(self, unet_blocks: nn.ModuleList):
# eject all VanillaTemporalModule objects from all blocks
for block in unet_blocks:
idx_to_pop = []
for idx, component in enumerate(block):
if type(component) == VanillaTemporalModule:
idx_to_pop.append(idx)
# pop in backwards order, as to not disturb what the indeces refer to
for idx in sorted(idx_to_pop, reverse=True):
block.pop(idx)
def set_video_length(self, video_length: int, full_length: int):
self.AD_video_length = video_length
for block in self.down_blocks:
block.set_video_length(video_length, full_length)
for block in self.up_blocks:
block.set_video_length(video_length, full_length)
if self.mid_block is not None:
self.mid_block.set_video_length(video_length, full_length)
def set_scale(self, multival: Union[float, Tensor]):
if multival is None:
multival = 1.0
if type(multival) == Tensor:
self._set_scale_multiplier(1.0)
self._set_scale_mask(multival)
else:
self._set_scale_multiplier(multival)
self._set_scale_mask(None)
def set_effect(self, multival: Union[float, Tensor]):
for block in self.down_blocks:
block.set_effect(multival)
for block in self.up_blocks:
block.set_effect(multival)
if self.mid_block is not None:
self.mid_block.set_effect(multival)
def set_sub_idxs(self, sub_idxs: list[int]):
for block in self.down_blocks:
block.set_sub_idxs(sub_idxs)
for block in self.up_blocks:
block.set_sub_idxs(sub_idxs)
if self.mid_block is not None:
self.mid_block.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
for block in self.down_blocks:
block.set_view_options(view_options)
for block in self.up_blocks:
block.set_view_options(view_options)
if self.mid_block is not None:
self.mid_block.set_view_options(view_options)
def reset(self):
self._reset_sub_idxs()
self._reset_scale_multiplier()
self._reset_temp_vars()
def _set_scale_multiplier(self, multiplier: Union[float, None]):
for block in self.down_blocks:
block.set_scale_multiplier(multiplier)
for block in self.up_blocks:
block.set_scale_multiplier(multiplier)
if self.mid_block is not None:
self.mid_block.set_scale_multiplier(multiplier)
def _set_scale_mask(self, mask: Tensor):
for block in self.down_blocks:
block.set_scale_mask(mask)
for block in self.up_blocks:
block.set_scale_mask(mask)
if self.mid_block is not None:
self.mid_block.set_scale_mask(mask)
def _reset_temp_vars(self):
for block in self.down_blocks:
block.reset_temp_vars()
for block in self.up_blocks:
block.reset_temp_vars()
if self.mid_block is not None:
self.mid_block.reset_temp_vars()
def _reset_scale_multiplier(self):
self._set_scale_multiplier(None)
def _reset_sub_idxs(self):
self.set_sub_idxs(None)
class MotionModule(nn.Module):
def __init__(self,
in_channels,
temporal_position_encoding=True,
temporal_position_encoding_max_len=24,
block_type: str=BlockType.DOWN,
ops=comfy.ops.disable_weight_init
):
super().__init__()
if block_type == BlockType.MID:
# mid blocks contain only a single VanillaTemporalModule
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)])
else:
# down blocks contain two VanillaTemporalModules
self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList(
[
get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops),
get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)
]
)
# up blocks contain one additional VanillaTemporalModule
if block_type == BlockType.UP:
self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops))
def set_video_length(self, video_length: int, full_length: int):
for motion_module in self.motion_modules:
motion_module.set_video_length(video_length, full_length)
def set_scale_multiplier(self, multiplier: Union[float, None]):
for motion_module in self.motion_modules:
motion_module.set_scale_multiplier(multiplier)
def set_scale_mask(self, mask: Tensor):
for motion_module in self.motion_modules:
motion_module.set_scale_mask(mask)
def set_effect(self, multival: Union[float, Tensor]):
for motion_module in self.motion_modules:
motion_module.set_effect(multival)
def set_sub_idxs(self, sub_idxs: list[int]):
for motion_module in self.motion_modules:
motion_module.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
for motion_module in self.motion_modules:
motion_module.set_view_options(view_options=view_options)
def reset_temp_vars(self):
for motion_module in self.motion_modules:
motion_module.reset_temp_vars()
def get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=comfy.ops.disable_weight_init):
return VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops)
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=1,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_position_encoding=True,
temporal_position_encoding_max_len=24,
temporal_attention_dim_div=1,
zero_initialize=True,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
self.video_length = 16
self.full_length = 16
self.sub_idxs = None
self.view_options = None
self.effect = None
self.temp_effect_mask: Tensor = None
self.prev_input_tensor_batch = 0
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels
// num_attention_heads
// temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(
self.temporal_transformer.proj_out
)
def set_video_length(self, video_length: int, full_length: int):
self.video_length = video_length
self.full_length = full_length
self.temporal_transformer.set_video_length(video_length, full_length)
def set_scale_multiplier(self, multiplier: Union[float, None]):
self.temporal_transformer.set_scale_multiplier(multiplier)
def set_scale_mask(self, mask: Tensor):
self.temporal_transformer.set_scale_mask(mask)
def set_effect(self, multival: Union[float, Tensor]):
if type(multival) == Tensor:
self.effect = multival
elif multival is not None and math.isclose(multival, 1.0):
self.effect = None
else:
self.effect = multival
self.temp_effect_mask = None
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
self.temporal_transformer.set_sub_idxs(sub_idxs)
def set_view_options(self, view_options: ContextOptions):
self.view_options = view_options
def reset_temp_vars(self):
self.set_effect(None)
self.set_view_options(None)
self.temporal_transformer.reset_temp_vars()
def get_effect_mask(self, input_tensor: Tensor):
batch, channel, height, width = input_tensor.shape
batched_number = batch // self.video_length
full_batched_idxs = list(range(self.video_length))*batched_number
# if there is a cached temp_effect_mask and it is valid for current input, return it
if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None:
if self.sub_idxs is not None:
return self.temp_effect_mask[self.sub_idxs*batched_number]
return self.temp_effect_mask[full_batched_idxs]
# clear any existing mask
del self.temp_effect_mask
self.temp_effect_mask = None
# recalculate temp mask
self.prev_input_tensor_batch = batch
# make sure mask matches expected dimensions
mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width))
# make sure mask is as long as full_length - clone last element of list if too short
self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to(
dtype=input_tensor.dtype, device=input_tensor.device)
# return finalized mask
if self.sub_idxs is not None:
return self.temp_effect_mask[self.sub_idxs*batched_number]
return self.temp_effect_mask[full_batched_idxs]
def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None):
if self.effect is None:
return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options)
# return weighted average of input_tensor and AD output
if type(self.effect) != Tensor:
effect = self.effect
# do nothing if effect is 0
if math.isclose(effect, 0.0):
return input_tensor
else:
effect = self.get_effect_mask(input_tensor)
return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options)*effect
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
self.video_length = 16
self.full_length = 16
self.raw_scale_mask: Union[Tensor, None] = None
self.temp_scale_mask: Union[Tensor, None] = None
self.sub_idxs: Union[list[int], None] = None
self.prev_hidden_states_batch = 0
inner_dim = num_attention_heads * attention_head_dim
self.norm = ops.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = ops.Linear(in_channels, inner_dim)
self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops,
)
for d in range(num_layers)
]
)
self.proj_out = ops.Linear(inner_dim, in_channels)
def set_video_length(self, video_length: int, full_length: int):
self.video_length = video_length
self.full_length = full_length
def set_scale_multiplier(self, multiplier: Union[float, None]):
for block in self.transformer_blocks:
block.set_scale_multiplier(multiplier)
def set_scale_mask(self, mask: Tensor):
self.raw_scale_mask = mask
self.temp_scale_mask = None
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
for block in self.transformer_blocks:
block.set_sub_idxs(sub_idxs)
def reset_temp_vars(self):
del self.temp_scale_mask
self.temp_scale_mask = None
self.prev_hidden_states_batch = 0
def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]:
# if no raw mask, return None
if self.raw_scale_mask is None:
return None
shape = hidden_states.shape
batch, channel, height, width = shape
# if temp mask already calculated, return it
if self.temp_scale_mask != None:
# check if hidden_states batch matches
if batch == self.prev_hidden_states_batch:
if self.sub_idxs is not None:
return self.temp_scale_mask[:, self.sub_idxs, :]
return self.temp_scale_mask
# if does not match, reset cached temp_scale_mask and recalculate it
del self.temp_scale_mask
self.temp_scale_mask = None
# otherwise, calculate temp mask
self.prev_hidden_states_batch = batch
mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width))
mask = repeat_to_batch_size(mask, self.full_length)
# if mask not the same amount length as full length, make it match
if self.full_length != mask.shape[0]:
mask = broadcast_image_to(mask, self.full_length, 1)
# reshape mask to attention K shape (h*w, latent_count, 1)
batch, channel, height, width = mask.shape
# first, perform same operations as on hidden_states,
# turning (b, c, h, w) -> (b, h*w, c)
mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
# then, make it the same shape as attention's k, (h*w, b, c)
mask = mask.permute(1, 0, 2)
# make masks match the expected length of h*w
batched_number = shape[0] // self.video_length
if batched_number > 1:
mask = torch.cat([mask] * batched_number, dim=0)
# cache mask and set to proper device
self.temp_scale_mask = mask
# move temp_scale_mask to proper dtype + device
self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device)
# return subset of masks, if needed
if self.sub_idxs is not None:
return self.temp_scale_mask[:, self.sub_idxs, :]
return self.temp_scale_mask
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None):
batch, channel, height, width = hidden_states.shape
residual = hidden_states
scale_mask = self.get_scale_mask(hidden_states)
# add some casts for fp8 purposes - does not affect speed otherwise
hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
video_length=self.video_length,
scale_mask=scale_mask,
view_options=view_options
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=comfy.ops.disable_weight_init,
):
super().__init__()
attention_blocks = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
VersatileAttention(
attention_mode=block_name.split("_")[0],
context_dim=cross_attention_dim # called context_dim for ComfyUI impl
if block_name.endswith("_Cross")
else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
#bias=attention_bias, # remove for Comfy CrossAttention
#upcast_attention=upcast_attention, # remove for Comfy CrossAttention
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
ops=ops,
)
)
norms.append(ops.LayerNorm(dim))
self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
self.ff_norm = ops.LayerNorm(dim)
def set_scale_multiplier(self, multiplier: Union[float, None]):
for block in self.attention_blocks:
block.set_scale_multiplier(multiplier)
def set_sub_idxs(self, sub_idxs: list[int]):
for block in self.attention_blocks:
block.set_sub_idxs(sub_idxs)
def forward(
self,
hidden_states: Tensor,
encoder_hidden_states: Tensor=None,
attention_mask: Tensor=None,
video_length: int=None,
scale_mask: Tensor=None,
view_options: ContextOptions=None,
):
# make view_options None if context_length > video_length, or if equal and equal not allowed
if view_options:
if view_options.context_length > video_length:
view_options = None
elif view_options.context_length == video_length and not view_options.use_on_equal_length:
view_options = None
if not view_options:
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if attention_block.is_cross_attention
else None,
attention_mask=attention_mask,
video_length=video_length,
scale_mask=scale_mask
) + hidden_states
)
else:
# views idea gotten from diffusers AnimateDiff FreeNoise implementation:
# https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py
# apply sliding context windows (views)
views = get_context_windows(num_frames=video_length, opts=view_options)
hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length)
value_final = torch.zeros_like(hidden_states)
count_final = torch.zeros_like(hidden_states)
# bias_final = [0.0] * video_length
batched_conds = hidden_states.size(1) // video_length
for sub_idxs in views:
sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c")
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype)
sub_hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too?
if attention_block.is_cross_attention
else None,
attention_mask=attention_mask,
video_length=len(sub_idxs),
scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask
) + sub_hidden_states
)
sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs))
# if view_options.fuse_method == ContextFuseMethod.RELATIVE:
# for pos, idx in enumerate(sub_idxs):
# # bias is the influence of a specific index in relation to the whole context window
# bias = 1 - abs(idx - (sub_idxs[0] + sub_idxs[-1]) / 2) / ((sub_idxs[-1] - sub_idxs[0] + 1e-2) / 2)
# bias = max(1e-2, bias)
# # take weighted averate relative to total bias of current idx
# bias_total = bias_final[idx]
# prev_weight = torch.tensor([bias_total / (bias_total + bias)],
# dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
# #prev_weight = torch.cat([prev_weight]*value_final.shape[1], dim=1)
# new_weight = torch.tensor([bias / (bias_total + bias)],
# dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
# #new_weight = torch.cat([new_weight]*value_final.shape[1], dim=1)
# test = value_final[:, idx:idx+1, :, :]
# value_final[:, idx:idx+1, :, :] = value_final[:, idx:idx+1, :, :] * prev_weight + sub_hidden_states[:, pos:pos+1, : ,:] * new_weight
# bias_final[idx] = bias_total + bias
# else:
weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds
weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
value_final[:, sub_idxs] += sub_hidden_states * weights_tensor
count_final[:, sub_idxs] += weights_tensor
# get weighted average of sub_hidden_states, if fuse method requires it
# if view_options.fuse_method != ContextFuseMethod.RELATIVE:
hidden_states = value_final / count_final
hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c")
del value_final
del count_final
# del bias_final
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.0, max_len=24):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
)
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
self.sub_idxs = None
def set_sub_idxs(self, sub_idxs: list[int]):
self.sub_idxs = sub_idxs
def forward(self, x):
#if self.sub_idxs is not None:
# x = x + self.pe[:, self.sub_idxs]
#else:
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)
class VersatileAttention(CrossAttentionMM):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
ops=comfy.ops.disable_weight_init,
*args,
**kwargs,
):
super().__init__(operations=ops, *args, **kwargs)
assert attention_mode == "Temporal"
self.attention_mode = attention_mode
self.is_cross_attention = kwargs["context_dim"] is not None
self.pos_encoder = (
PositionalEncoding(
kwargs["query_dim"],
dropout=0.0,
max_len=temporal_position_encoding_max_len,
)
if (temporal_position_encoding and attention_mode == "Temporal")
else None
)
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_scale_multiplier(self, multiplier: Union[float, None]):
if multiplier is None or math.isclose(multiplier, 1.0):
self.scale = 1.0
else:
self.scale = multiplier
def set_sub_idxs(self, sub_idxs: list[int]):
if self.pos_encoder != None:
self.pos_encoder.set_sub_idxs(sub_idxs)
def forward(
self,
hidden_states: Tensor,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
scale_mask=None,
):
if self.attention_mode != "Temporal":
raise NotImplementedError
d = hidden_states.shape[1]
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype)
encoder_hidden_states = (
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
if encoder_hidden_states is not None
else encoder_hidden_states
)
hidden_states = super().forward(
hidden_states,
encoder_hidden_states,
value=None,
mask=attention_mask,
scale_mask=scale_mask,
)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
|