File size: 41,572 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
import math
from typing import Iterable, Tuple, Union
import re

import torch
from einops import rearrange, repeat
from torch import Tensor, nn

from comfy.ldm.modules.attention import FeedForward, SpatialTransformer
from comfy.model_patcher import ModelPatcher
from comfy.ldm.modules.diffusionmodules import openaimodel
from comfy.ldm.modules.diffusionmodules.openaimodel import SpatialTransformer
from comfy.controlnet import broadcast_image_to
from comfy.utils import repeat_to_batch_size
import comfy.ops
import comfy.model_management

from .context import ContextFuseMethod, ContextOptions, get_context_weights, get_context_windows
from .utils_motion import CrossAttentionMM, MotionCompatibilityError, extend_to_batch_size, prepare_mask_batch
from .utils_model import BetaSchedules, ModelTypeSD
from .logger import logger


def zero_module(module):
    # Zero out the parameters of a module and return it.
    for p in module.parameters():
        p.detach().zero_()
    return module


class AnimateDiffFormat:
    ANIMATEDIFF = "AnimateDiff"
    HOTSHOTXL = "HotshotXL"
    ANIMATELCM = "AnimateLCM"


class AnimateDiffVersion:
    V1 = "v1"
    V2 = "v2"
    V3 = "v3"


class AnimateDiffInfo:
    def __init__(self, sd_type: str, mm_format: str, mm_version: str, mm_name: str):
        self.sd_type = sd_type
        self.mm_format = mm_format
        self.mm_version = mm_version
        self.mm_name = mm_name
    
    def get_string(self):
        return f"{self.mm_name}:{self.mm_version}:{self.mm_format}:{self.sd_type}"


def is_hotshotxl(mm_state_dict: dict[str, Tensor]) -> bool:
    # use pos_encoder naming to determine if hotshotxl model
    for key in mm_state_dict.keys():
        if key.endswith("pos_encoder.positional_encoding"):
            return True
    return False


def is_animatelcm(mm_state_dict: dict[str, Tensor]) -> bool:
    # use lack of ANY pos_encoder keys to determine if animatelcm model
    for key in mm_state_dict.keys():
        if "pos_encoder" in key:
            return False
    return True


def get_down_block_max(mm_state_dict: dict[str, Tensor]) -> int:
    # keep track of biggest down_block count in module
    biggest_block = 0
    for key in mm_state_dict.keys():
        if "down_blocks" in key:
            try:
                block_int = key.split(".")[1]
                block_num = int(block_int)
                if block_num > biggest_block:
                    biggest_block = block_num
            except ValueError:
                pass
    return biggest_block


def has_mid_block(mm_state_dict: dict[str, Tensor]):
    # check if keys contain mid_block
    for key in mm_state_dict.keys():
        if key.startswith("mid_block."):
            return True
    return False


def get_position_encoding_max_len(mm_state_dict: dict[str, Tensor], mm_name: str, mm_format: str) -> Union[int, None]:
    # use pos_encoder.pe entries to determine max length - [1, {max_length}, {320|640|1280}]
    for key in mm_state_dict.keys():
        if key.endswith("pos_encoder.pe"):
            return mm_state_dict[key].size(1) # get middle dim
    # AnimateLCM models should have no pos_encoder entries, and assumed to be 64
    if mm_format == AnimateDiffFormat.ANIMATELCM:
        return 64
    raise MotionCompatibilityError(f"No pos_encoder.pe found in mm_state_dict - {mm_name} is not a valid AnimateDiff motion module!")


_regex_hotshotxl_module_num = re.compile(r'temporal_attentions\.(\d+)\.')
def find_hotshot_module_num(key: str) -> Union[int, None]:
    found = _regex_hotshotxl_module_num.search(key)
    if found:
        return int(found.group(1))
    return None


def normalize_ad_state_dict(mm_state_dict: dict[str, Tensor], mm_name: str) -> Tuple[dict[str, Tensor], AnimateDiffInfo]:
    # from pathlib import Path
    # with open(Path(__file__).parent.parent.parent / f"keys_{mm_name}.txt", "w") as afile:
    #     for key, value in mm_state_dict.items():
    #         afile.write(f"{key}:\t{value.shape}\n")
    
    # remove all non-temporal keys (in case model has extra stuff in it)
    for key in list(mm_state_dict.keys()):
        if "temporal" not in key:
            del mm_state_dict[key]
    # determine what SD model the motion module is intended for
    sd_type: str = None
    down_block_max = get_down_block_max(mm_state_dict)
    if down_block_max == 3:
        sd_type = ModelTypeSD.SD1_5
    elif down_block_max == 2:
        sd_type = ModelTypeSD.SDXL
    else:
        raise ValueError(f"'{mm_name}' is not a valid SD1.5 nor SDXL motion module - contained {down_block_max} downblocks.")
    # determine the model's format
    mm_format = AnimateDiffFormat.ANIMATEDIFF
    if is_hotshotxl(mm_state_dict):
        mm_format = AnimateDiffFormat.HOTSHOTXL
    if is_animatelcm(mm_state_dict):
        mm_format = AnimateDiffFormat.ANIMATELCM
    # determine the model's version
    mm_version = AnimateDiffVersion.V1
    if has_mid_block(mm_state_dict):
        mm_version = AnimateDiffVersion.V2
    elif sd_type==ModelTypeSD.SD1_5 and get_position_encoding_max_len(mm_state_dict, mm_name, mm_format)==32:
        mm_version = AnimateDiffVersion.V3
    info = AnimateDiffInfo(sd_type=sd_type, mm_format=mm_format, mm_version=mm_version, mm_name=mm_name)
    # convert to AnimateDiff format, if needed
    if mm_format == AnimateDiffFormat.HOTSHOTXL:
        # HotshotXL is AD-based architecture applied to SDXL instead of SD1.5
        # By renaming the keys, no code needs to be adapted at all
        #
        # reformat temporal_attentions:
        # HSXL: temporal_attentions.#.
        #   AD: motion_modules.#.temporal_transformer.
        # HSXL: pos_encoder.positional_encoding
        #   AD: pos_encoder.pe
        for key in list(mm_state_dict.keys()):
            module_num = find_hotshot_module_num(key)
            if module_num is not None:
                new_key = key.replace(f"temporal_attentions.{module_num}",
                                      f"motion_modules.{module_num}.temporal_transformer", 1)
                new_key = new_key.replace("pos_encoder.positional_encoding", "pos_encoder.pe")
                mm_state_dict[new_key] = mm_state_dict[key]
                del mm_state_dict[key]
    # return adjusted mm_state_dict and info
    return mm_state_dict, info


class BlockType:
    UP = "up"
    DOWN = "down"
    MID = "mid"


class AnimateDiffModel(nn.Module):
    def __init__(self, mm_state_dict: dict[str, Tensor], mm_info: AnimateDiffInfo):
        super().__init__()
        self.mm_info = mm_info
        self.down_blocks: Iterable[MotionModule] = nn.ModuleList([])
        self.up_blocks: Iterable[MotionModule] = nn.ModuleList([])
        self.mid_block: Union[MotionModule, None] = None
        self.encoding_max_len = get_position_encoding_max_len(mm_state_dict, mm_info.mm_name, mm_info.mm_format)
        self.has_position_encoding = self.encoding_max_len is not None
        # determine ops to use (to support fp8 properly)
        if comfy.model_management.unet_manual_cast(comfy.model_management.unet_dtype(), comfy.model_management.get_torch_device()) is None:
            ops = comfy.ops.disable_weight_init
        else:
            ops = comfy.ops.manual_cast
        # SDXL has 3 up/down blocks, SD1.5 has 4 up/down blocks
        if mm_info.sd_type == ModelTypeSD.SDXL:
            layer_channels = (320, 640, 1280)
        else:
            layer_channels = (320, 640, 1280, 1280)
        # fill out down/up blocks and middle block, if present
        for c in layer_channels:
            self.down_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding,
                                                 temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.DOWN, ops=ops))
        for c in reversed(layer_channels):
            self.up_blocks.append(MotionModule(c, temporal_position_encoding=self.has_position_encoding,
                                               temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.UP, ops=ops))
        if has_mid_block(mm_state_dict):
            self.mid_block = MotionModule(1280, temporal_position_encoding=self.has_position_encoding,
                                          temporal_position_encoding_max_len=self.encoding_max_len, block_type=BlockType.MID, ops=ops)
        self.AD_video_length: int = 24

    def get_device_debug(self):
        return self.down_blocks[0].motion_modules[0].temporal_transformer.proj_in.weight.device

    def is_length_valid_for_encoding_max_len(self, length: int):
        if self.encoding_max_len is None:
            return True
        return length <= self.encoding_max_len

    def get_best_beta_schedule(self, log=False) -> str:
        to_return = None
        if self.mm_info.sd_type == ModelTypeSD.SD1_5:
            if self.mm_info.mm_format == AnimateDiffFormat.ANIMATELCM:
                to_return = BetaSchedules.LCM  # while LCM_100 is the intended schedule, I find LCM to have much less flicker
            else:
                to_return = BetaSchedules.SQRT_LINEAR
        elif self.mm_info.sd_type == ModelTypeSD.SDXL:
            if self.mm_info.mm_format == AnimateDiffFormat.HOTSHOTXL:
                to_return = BetaSchedules.LINEAR
            else:
                to_return = BetaSchedules.LINEAR_ADXL
        if to_return is not None:
            if log: logger.info(f"[Autoselect]: '{to_return}' beta_schedule for {self.mm_info.get_string()}")
        else:
            to_return = BetaSchedules.USE_EXISTING
            if log: logger.info(f"[Autoselect]: could not find beta_schedule for {self.mm_info.get_string()}, defaulting to '{to_return}'")
        return to_return

    def cleanup(self):
        pass

    def inject(self, model: ModelPatcher):
        unet: openaimodel.UNetModel = model.model.diffusion_model
        # inject input (down) blocks
        # SD15 mm contains 4 downblocks, each with 2 TemporalTransformers - 8 in total
        # SDXL mm contains 3 downblocks, each with 2 TemporalTransformers - 6 in total
        self._inject(unet.input_blocks, self.down_blocks)
        # inject output (up) blocks
        # SD15 mm contains 4 upblocks, each with 3 TemporalTransformers - 12 in total
        # SDXL mm contains 3 upblocks, each with 3 TemporalTransformers - 9 in total
        self._inject(unet.output_blocks, self.up_blocks)
        # inject mid block, if needed (encapsulate in list to make structure compatible)
        if self.mid_block is not None:
            self._inject([unet.middle_block], [self.mid_block])
        del unet

    def _inject(self, unet_blocks: nn.ModuleList, mm_blocks: nn.ModuleList):
        # Rules for injection:
        # For each component list in a unet block:
        #     if SpatialTransformer exists in list, place next block after last occurrence
        #     elif ResBlock exists in list, place next block after first occurrence
        #     else don't place block
        injection_count = 0
        unet_idx = 0
        # details about blocks passed in
        per_block = len(mm_blocks[0].motion_modules)
        injection_goal = len(mm_blocks) * per_block
        # only stop injecting when modules exhausted
        while injection_count < injection_goal:
            # figure out which VanillaTemporalModule from mm to inject
            mm_blk_idx, mm_vtm_idx = injection_count // per_block, injection_count % per_block
            # figure out layout of unet block components
            st_idx = -1 # SpatialTransformer index
            res_idx = -1 # first ResBlock index
            # first, figure out indeces of relevant blocks
            for idx, component in enumerate(unet_blocks[unet_idx]):
                if type(component) == SpatialTransformer:
                    st_idx = idx
                elif type(component).__name__ == "ResBlock" and res_idx < 0:
                    res_idx = idx
            # if SpatialTransformer exists, inject right after
            if st_idx >= 0:
                #logger.info(f"AD: injecting after ST({st_idx})")
                unet_blocks[unet_idx].insert(st_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
                injection_count += 1
            # otherwise, if only ResBlock exists, inject right after
            elif res_idx >= 0:
                #logger.info(f"AD: injecting after Res({res_idx})")
                unet_blocks[unet_idx].insert(res_idx+1, mm_blocks[mm_blk_idx].motion_modules[mm_vtm_idx])
                injection_count += 1
            # increment unet_idx
            unet_idx += 1

    def eject(self, model: ModelPatcher):
        unet: openaimodel.UNetModel = model.model.diffusion_model
        # remove from input blocks (downblocks)
        self._eject(unet.input_blocks)
        # remove from output blocks (upblocks)
        self._eject(unet.output_blocks)
        # remove from middle block (encapsulate in list to make compatible)
        self._eject([unet.middle_block])
        del unet

    def _eject(self, unet_blocks: nn.ModuleList):
        # eject all VanillaTemporalModule objects from all blocks
        for block in unet_blocks:
            idx_to_pop = []
            for idx, component in enumerate(block):
                if type(component) == VanillaTemporalModule:
                    idx_to_pop.append(idx)
            # pop in backwards order, as to not disturb what the indeces refer to
            for idx in sorted(idx_to_pop, reverse=True):
                block.pop(idx)

    def set_video_length(self, video_length: int, full_length: int):
        self.AD_video_length = video_length
        for block in self.down_blocks:
            block.set_video_length(video_length, full_length)
        for block in self.up_blocks:
            block.set_video_length(video_length, full_length)
        if self.mid_block is not None:
            self.mid_block.set_video_length(video_length, full_length)
    
    def set_scale(self, multival: Union[float, Tensor]):
        if multival is None:
            multival = 1.0
        if type(multival) == Tensor:
            self._set_scale_multiplier(1.0)
            self._set_scale_mask(multival)
        else:
            self._set_scale_multiplier(multival)
            self._set_scale_mask(None)
    
    def set_effect(self, multival: Union[float, Tensor]):
        for block in self.down_blocks:
            block.set_effect(multival)
        for block in self.up_blocks:
            block.set_effect(multival)
        if self.mid_block is not None:
            self.mid_block.set_effect(multival)

    def set_sub_idxs(self, sub_idxs: list[int]):
        for block in self.down_blocks:
            block.set_sub_idxs(sub_idxs)
        for block in self.up_blocks:
            block.set_sub_idxs(sub_idxs)
        if self.mid_block is not None:
            self.mid_block.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        for block in self.down_blocks:
            block.set_view_options(view_options)
        for block in self.up_blocks:
            block.set_view_options(view_options)
        if self.mid_block is not None:
            self.mid_block.set_view_options(view_options)

    def reset(self):
        self._reset_sub_idxs()
        self._reset_scale_multiplier()
        self._reset_temp_vars()

    def _set_scale_multiplier(self, multiplier: Union[float, None]):
        for block in self.down_blocks:
            block.set_scale_multiplier(multiplier)
        for block in self.up_blocks:
            block.set_scale_multiplier(multiplier)
        if self.mid_block is not None:
            self.mid_block.set_scale_multiplier(multiplier)

    def _set_scale_mask(self, mask: Tensor):
        for block in self.down_blocks:
            block.set_scale_mask(mask)
        for block in self.up_blocks:
            block.set_scale_mask(mask)
        if self.mid_block is not None:
            self.mid_block.set_scale_mask(mask)
    
    def _reset_temp_vars(self):
        for block in self.down_blocks:
            block.reset_temp_vars()
        for block in self.up_blocks:
            block.reset_temp_vars()
        if self.mid_block is not None:
            self.mid_block.reset_temp_vars()

    def _reset_scale_multiplier(self):
        self._set_scale_multiplier(None)

    def _reset_sub_idxs(self):
        self.set_sub_idxs(None)


class MotionModule(nn.Module):
    def __init__(self,
            in_channels,
            temporal_position_encoding=True,
            temporal_position_encoding_max_len=24,
            block_type: str=BlockType.DOWN,
            ops=comfy.ops.disable_weight_init
        ):
        super().__init__()
        if block_type == BlockType.MID:
            # mid blocks contain only a single VanillaTemporalModule
            self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList([get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)])
        else:
            # down blocks contain two VanillaTemporalModules
            self.motion_modules: Iterable[VanillaTemporalModule] = nn.ModuleList(
                [
                    get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops),
                    get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops)
                ]
            )
            # up blocks contain one additional VanillaTemporalModule
            if block_type == BlockType.UP: 
                self.motion_modules.append(get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=ops))
    
    def set_video_length(self, video_length: int, full_length: int):
        for motion_module in self.motion_modules:
            motion_module.set_video_length(video_length, full_length)
    
    def set_scale_multiplier(self, multiplier: Union[float, None]):
        for motion_module in self.motion_modules:
            motion_module.set_scale_multiplier(multiplier)
    
    def set_scale_mask(self, mask: Tensor):
        for motion_module in self.motion_modules:
            motion_module.set_scale_mask(mask)
    
    def set_effect(self, multival: Union[float, Tensor]):
        for motion_module in self.motion_modules:
            motion_module.set_effect(multival)
    
    def set_sub_idxs(self, sub_idxs: list[int]):
        for motion_module in self.motion_modules:
            motion_module.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        for motion_module in self.motion_modules:
            motion_module.set_view_options(view_options=view_options)

    def reset_temp_vars(self):
        for motion_module in self.motion_modules:
            motion_module.reset_temp_vars()


def get_motion_module(in_channels, temporal_position_encoding, temporal_position_encoding_max_len, ops=comfy.ops.disable_weight_init):
    return VanillaTemporalModule(in_channels=in_channels, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ops=ops)


class VanillaTemporalModule(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads=8,
        num_transformer_block=1,
        attention_block_types=("Temporal_Self", "Temporal_Self"),
        cross_frame_attention_mode=None,
        temporal_position_encoding=True,
        temporal_position_encoding_max_len=24,
        temporal_attention_dim_div=1,
        zero_initialize=True,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()

        self.video_length = 16
        self.full_length = 16
        self.sub_idxs = None
        self.view_options = None

        self.effect = None
        self.temp_effect_mask: Tensor = None
        self.prev_input_tensor_batch = 0

        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels
            // num_attention_heads
            // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_position_encoding=temporal_position_encoding,
            temporal_position_encoding_max_len=temporal_position_encoding_max_len,
            ops=ops
        )

        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(
                self.temporal_transformer.proj_out
            )

    def set_video_length(self, video_length: int, full_length: int):
        self.video_length = video_length
        self.full_length = full_length
        self.temporal_transformer.set_video_length(video_length, full_length)
    
    def set_scale_multiplier(self, multiplier: Union[float, None]):
        self.temporal_transformer.set_scale_multiplier(multiplier)

    def set_scale_mask(self, mask: Tensor):
        self.temporal_transformer.set_scale_mask(mask)

    def set_effect(self, multival: Union[float, Tensor]):
        if type(multival) == Tensor:
            self.effect = multival
        elif multival is not None and math.isclose(multival, 1.0):
            self.effect = None
        else:
            self.effect = multival
        self.temp_effect_mask = None

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs
        self.temporal_transformer.set_sub_idxs(sub_idxs)

    def set_view_options(self, view_options: ContextOptions):
        self.view_options = view_options

    def reset_temp_vars(self):
        self.set_effect(None)
        self.set_view_options(None)
        self.temporal_transformer.reset_temp_vars()

    def get_effect_mask(self, input_tensor: Tensor):
        batch, channel, height, width = input_tensor.shape
        batched_number = batch // self.video_length
        full_batched_idxs = list(range(self.video_length))*batched_number
        # if there is a cached temp_effect_mask and it is valid for current input, return it
        if batch == self.prev_input_tensor_batch and self.temp_effect_mask is not None:
            if self.sub_idxs is not None:
                return self.temp_effect_mask[self.sub_idxs*batched_number]
            return self.temp_effect_mask[full_batched_idxs]
        # clear any existing mask
        del self.temp_effect_mask
        self.temp_effect_mask = None
        # recalculate temp mask
        self.prev_input_tensor_batch = batch
        # make sure mask matches expected dimensions
        mask = prepare_mask_batch(self.effect, shape=(self.full_length, 1, height, width))
        # make sure mask is as long as full_length - clone last element of list if too short
        self.temp_effect_mask = extend_to_batch_size(mask, self.full_length).to(
            dtype=input_tensor.dtype, device=input_tensor.device)
        # return finalized mask
        if self.sub_idxs is not None:
            return self.temp_effect_mask[self.sub_idxs*batched_number]
        return self.temp_effect_mask[full_batched_idxs]

    def forward(self, input_tensor: Tensor, encoder_hidden_states=None, attention_mask=None):
        if self.effect is None:
            return self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options)
        # return weighted average of input_tensor and AD output
        if type(self.effect) != Tensor:
            effect = self.effect
            # do nothing if effect is 0
            if math.isclose(effect, 0.0):
                return input_tensor
        else:
            effect = self.get_effect_mask(input_tensor)
        return input_tensor*(1.0-effect) + self.temporal_transformer(input_tensor, encoder_hidden_states, attention_mask, self.view_options)*effect


class TemporalTransformer3DModel(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,
        num_layers,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()
        self.video_length = 16
        self.full_length = 16
        self.raw_scale_mask: Union[Tensor, None] = None
        self.temp_scale_mask: Union[Tensor, None] = None
        self.sub_idxs: Union[list[int], None] = None
        self.prev_hidden_states_batch = 0


        inner_dim = num_attention_heads * attention_head_dim

        self.norm = ops.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        self.proj_in = ops.Linear(in_channels, inner_dim)

        self.transformer_blocks: Iterable[TemporalTransformerBlock] = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    ops=ops,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = ops.Linear(inner_dim, in_channels)

    def set_video_length(self, video_length: int, full_length: int):
        self.video_length = video_length
        self.full_length = full_length
    
    def set_scale_multiplier(self, multiplier: Union[float, None]):
        for block in self.transformer_blocks:
            block.set_scale_multiplier(multiplier)

    def set_scale_mask(self, mask: Tensor):
        self.raw_scale_mask = mask
        self.temp_scale_mask = None

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs
        for block in self.transformer_blocks:
            block.set_sub_idxs(sub_idxs)

    def reset_temp_vars(self):
        del self.temp_scale_mask
        self.temp_scale_mask = None
        self.prev_hidden_states_batch = 0

    def get_scale_mask(self, hidden_states: Tensor) -> Union[Tensor, None]:
        # if no raw mask, return None
        if self.raw_scale_mask is None:
            return None
        shape = hidden_states.shape
        batch, channel, height, width = shape
        # if temp mask already calculated, return it
        if self.temp_scale_mask != None:
            # check if hidden_states batch matches
            if batch == self.prev_hidden_states_batch:
                if self.sub_idxs is not None:
                    return self.temp_scale_mask[:, self.sub_idxs, :]
                return self.temp_scale_mask
            # if does not match, reset cached temp_scale_mask and recalculate it
            del self.temp_scale_mask
            self.temp_scale_mask = None
        # otherwise, calculate temp mask
        self.prev_hidden_states_batch = batch
        mask = prepare_mask_batch(self.raw_scale_mask, shape=(self.full_length, 1, height, width))
        mask = repeat_to_batch_size(mask, self.full_length)
        # if mask not the same amount length as full length, make it match
        if self.full_length != mask.shape[0]:
            mask = broadcast_image_to(mask, self.full_length, 1)
        # reshape mask to attention K shape (h*w, latent_count, 1)
        batch, channel, height, width = mask.shape
        # first, perform same operations as on hidden_states,
        # turning (b, c, h, w) -> (b, h*w, c)
        mask = mask.permute(0, 2, 3, 1).reshape(batch, height*width, channel)
        # then, make it the same shape as attention's k, (h*w, b, c)
        mask = mask.permute(1, 0, 2)
        # make masks match the expected length of h*w
        batched_number = shape[0] // self.video_length
        if batched_number > 1:
            mask = torch.cat([mask] * batched_number, dim=0)
        # cache mask and set to proper device
        self.temp_scale_mask = mask
        # move temp_scale_mask to proper dtype + device
        self.temp_scale_mask = self.temp_scale_mask.to(dtype=hidden_states.dtype, device=hidden_states.device)
        # return subset of masks, if needed
        if self.sub_idxs is not None:
            return self.temp_scale_mask[:, self.sub_idxs, :]
        return self.temp_scale_mask

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, view_options: ContextOptions=None):
        batch, channel, height, width = hidden_states.shape
        residual = hidden_states
        scale_mask = self.get_scale_mask(hidden_states)
        # add some casts for fp8 purposes - does not affect speed otherwise
        hidden_states = self.norm(hidden_states).to(hidden_states.dtype)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
            batch, height * width, inner_dim
        )
        hidden_states = self.proj_in(hidden_states).to(hidden_states.dtype)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                video_length=self.video_length,
                scale_mask=scale_mask,
                view_options=view_options
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, height, width, inner_dim)
            .permute(0, 3, 1, 2)
            .contiguous()
        )

        output = hidden_states + residual

        return output


class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_attention_heads,
        attention_head_dim,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        ops=comfy.ops.disable_weight_init,
    ):
        super().__init__()

        attention_blocks = []
        norms = []

        for block_name in attention_block_types:
            attention_blocks.append(
                VersatileAttention(
                    attention_mode=block_name.split("_")[0],
                    context_dim=cross_attention_dim # called context_dim for ComfyUI impl
                    if block_name.endswith("_Cross")
                    else None,
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    #bias=attention_bias, # remove for Comfy CrossAttention
                    #upcast_attention=upcast_attention, # remove for Comfy CrossAttention
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    ops=ops,
                )
            )
            norms.append(ops.LayerNorm(dim))

        self.attention_blocks: Iterable[VersatileAttention] = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout, glu=(activation_fn == "geglu"), operations=ops)
        self.ff_norm = ops.LayerNorm(dim)

    def set_scale_multiplier(self, multiplier: Union[float, None]):
        for block in self.attention_blocks:
            block.set_scale_multiplier(multiplier)

    def set_sub_idxs(self, sub_idxs: list[int]):
        for block in self.attention_blocks:
            block.set_sub_idxs(sub_idxs)

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states: Tensor=None,
        attention_mask: Tensor=None,
        video_length: int=None,
        scale_mask: Tensor=None,
        view_options: ContextOptions=None,
    ):
        # make view_options None if context_length > video_length, or if equal and equal not allowed
        if view_options:
            if view_options.context_length > video_length:
                view_options = None
            elif view_options.context_length == video_length and not view_options.use_on_equal_length:
                view_options = None
        if not view_options:
            for attention_block, norm in zip(self.attention_blocks, self.norms):
                norm_hidden_states = norm(hidden_states).to(hidden_states.dtype)
                hidden_states = (
                    attention_block(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states
                        if attention_block.is_cross_attention
                        else None,
                        attention_mask=attention_mask,
                        video_length=video_length,
                        scale_mask=scale_mask
                    ) + hidden_states
                )
        else:
            # views idea gotten from diffusers AnimateDiff FreeNoise implementation:
            # https://github.com/arthur-qiu/FreeNoise-AnimateDiff/blob/main/animatediff/models/motion_module.py
            # apply sliding context windows (views)
            views = get_context_windows(num_frames=video_length, opts=view_options)
            hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length)
            value_final = torch.zeros_like(hidden_states)
            count_final = torch.zeros_like(hidden_states)
            # bias_final = [0.0] * video_length
            batched_conds = hidden_states.size(1) // video_length
            for sub_idxs in views:
                sub_hidden_states = rearrange(hidden_states[:, sub_idxs], "b f d c -> (b f) d c")
                for attention_block, norm in zip(self.attention_blocks, self.norms):
                    norm_hidden_states = norm(sub_hidden_states).to(sub_hidden_states.dtype)
                    sub_hidden_states = (
                        attention_block(
                            norm_hidden_states,
                            encoder_hidden_states=encoder_hidden_states # do these need to be changed for sub_idxs too?
                            if attention_block.is_cross_attention
                            else None,
                            attention_mask=attention_mask,
                            video_length=len(sub_idxs),
                            scale_mask=scale_mask[:, sub_idxs, :] if scale_mask is not None else scale_mask
                        ) + sub_hidden_states
                    )
                sub_hidden_states = rearrange(sub_hidden_states, "(b f) d c -> b f d c", f=len(sub_idxs))

                # if view_options.fuse_method == ContextFuseMethod.RELATIVE:
                #     for pos, idx in enumerate(sub_idxs):
                #         # bias is the influence of a specific index in relation to the whole context window
                #         bias = 1 - abs(idx - (sub_idxs[0] + sub_idxs[-1]) / 2) / ((sub_idxs[-1] - sub_idxs[0] + 1e-2) / 2)
                #         bias = max(1e-2, bias)
                #         # take weighted averate relative to total bias of current idx
                #         bias_total = bias_final[idx]
                #         prev_weight = torch.tensor([bias_total / (bias_total + bias)],
                #                                    dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                #         #prev_weight = torch.cat([prev_weight]*value_final.shape[1], dim=1)
                #         new_weight = torch.tensor([bias / (bias_total + bias)],
                #                                    dtype=value_final.dtype, device=value_final.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                #         #new_weight = torch.cat([new_weight]*value_final.shape[1], dim=1)
                #         test = value_final[:, idx:idx+1, :, :]
                #         value_final[:, idx:idx+1, :, :] = value_final[:, idx:idx+1, :, :] * prev_weight + sub_hidden_states[:, pos:pos+1, : ,:] * new_weight
                #         bias_final[idx] = bias_total + bias
                # else:
                weights = get_context_weights(len(sub_idxs), view_options.fuse_method) * batched_conds
                weights_tensor = torch.Tensor(weights).to(device=hidden_states.device).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                value_final[:, sub_idxs] += sub_hidden_states * weights_tensor
                count_final[:, sub_idxs] += weights_tensor
            
            # get weighted average of sub_hidden_states, if fuse method requires it
            # if view_options.fuse_method != ContextFuseMethod.RELATIVE:
            hidden_states = value_final / count_final
            hidden_states = rearrange(hidden_states, "b f d c -> (b f) d c")
            del value_final
            del count_final
            # del bias_final

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.0, max_len=24):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )
        pe = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)
        self.sub_idxs = None

    def set_sub_idxs(self, sub_idxs: list[int]):
        self.sub_idxs = sub_idxs

    def forward(self, x):
        #if self.sub_idxs is not None:
        #    x = x + self.pe[:, self.sub_idxs]
        #else:
        x = x + self.pe[:, : x.size(1)]
        return self.dropout(x)


class VersatileAttention(CrossAttentionMM):
    def __init__(
        self,
        attention_mode=None,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        ops=comfy.ops.disable_weight_init,
        *args,
        **kwargs,
    ):
        super().__init__(operations=ops, *args, **kwargs)
        assert attention_mode == "Temporal"

        self.attention_mode = attention_mode
        self.is_cross_attention = kwargs["context_dim"] is not None

        self.pos_encoder = (
            PositionalEncoding(
                kwargs["query_dim"],
                dropout=0.0,
                max_len=temporal_position_encoding_max_len,
            )
            if (temporal_position_encoding and attention_mode == "Temporal")
            else None
        )

    def extra_repr(self):
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def set_scale_multiplier(self, multiplier: Union[float, None]):
        if multiplier is None or math.isclose(multiplier, 1.0):
            self.scale = 1.0
        else:
            self.scale = multiplier

    def set_sub_idxs(self, sub_idxs: list[int]):
        if self.pos_encoder != None:
            self.pos_encoder.set_sub_idxs(sub_idxs)

    def forward(
        self,
        hidden_states: Tensor,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        scale_mask=None,
    ):
        if self.attention_mode != "Temporal":
            raise NotImplementedError

        d = hidden_states.shape[1]
        hidden_states = rearrange(
            hidden_states, "(b f) d c -> (b d) f c", f=video_length
        )

        if self.pos_encoder is not None:
           hidden_states = self.pos_encoder(hidden_states).to(hidden_states.dtype)

        encoder_hidden_states = (
            repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
            if encoder_hidden_states is not None
            else encoder_hidden_states
        )

        hidden_states = super().forward(
            hidden_states,
            encoder_hidden_states,
            value=None,
            mask=attention_mask,
            scale_mask=scale_mask,
        )

        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states