File size: 9,287 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
from PIL import ImageOps
from impact.utils import *

from . import core
import random

class PreviewBridge:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "images": ("IMAGE",),
                    "image": ("STRING", {"default": ""}),
                    },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = ("IMAGE", "MASK", )

    FUNCTION = "doit"

    OUTPUT_NODE = True

    CATEGORY = "ImpactPack/Util"

    def __init__(self):
        super().__init__()
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prev_hash = None

    @staticmethod
    def load_image(pb_id):
        is_fail = False
        if pb_id not in core.preview_bridge_image_id_map:
            is_fail = True

        image_path, ui_item = core.preview_bridge_image_id_map[pb_id]

        if not os.path.isfile(image_path):
            is_fail = True

        if not is_fail:
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]

            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
        else:
            image = empty_pil_tensor()
            mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
            ui_item = {
                "filename": 'empty.png',
                "subfolder": '',
                "type": 'temp'
            }

        return image, mask.unsqueeze(0), ui_item

    def doit(self, images, image, unique_id):
        need_refresh = False

        if unique_id not in core.preview_bridge_cache:
            need_refresh = True

        elif core.preview_bridge_cache[unique_id][0] is not images:
            need_refresh = True

        if not need_refresh:
            pixels, mask, path_item = PreviewBridge.load_image(image)
            image = [path_item]
        else:
            res = nodes.PreviewImage().save_images(images, filename_prefix="PreviewBridge/PB-")
            image2 = res['ui']['images']
            pixels = images
            mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")

            path = os.path.join(folder_paths.get_temp_directory(), 'PreviewBridge', image2[0]['filename'])
            core.set_previewbridge_image(unique_id, path, image2[0])
            core.preview_bridge_image_id_map[image] = (path, image2[0])
            core.preview_bridge_image_name_map[unique_id, path] = (image, image2[0])
            core.preview_bridge_cache[unique_id] = (images, image2)

            image = image2

        return {
            "ui": {"images": image},
            "result": (pixels, mask, ),
        }


def decode_latent(latent_tensor, preview_method, vae_opt=None):
    if vae_opt is not None:
        image = nodes.VAEDecode().decode(vae_opt, latent_tensor)[0]
        return image

    from comfy.cli_args import LatentPreviewMethod
    import comfy.latent_formats as latent_formats

    if preview_method.startswith("TAE"):
        if preview_method == "TAESD15":
            decoder_name = "taesd"
        else:
            decoder_name = "taesdxl"

        vae = nodes.VAELoader().load_vae(decoder_name)[0]
        image = nodes.VAEDecode().decode(vae, latent_tensor)[0]
        return image

    else:
        if preview_method == "Latent2RGB-SD15":
            latent_format = latent_formats.SD15()
            method = LatentPreviewMethod.Latent2RGB
        else:  # preview_method == "Latent2RGB-SDXL"
            latent_format = latent_formats.SDXL()
            method = LatentPreviewMethod.Latent2RGB

        previewer = core.get_previewer("cpu", latent_format=latent_format, force=True, method=method)
        pil_image = previewer.decode_latent_to_preview(latent_tensor['samples'])
        pixels_size = pil_image.size[0]*8, pil_image.size[1]*8
        resized_image = pil_image.resize(pixels_size, Image.NONE)

        return to_tensor(resized_image).unsqueeze(0)


class PreviewBridgeLatent:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "latent": ("LATENT",),
                    "image": ("STRING", {"default": ""}),
                    "preview_method": (["Latent2RGB-SDXL", "Latent2RGB-SD15", "TAESDXL", "TAESD15"],),
                    },
                "optional": {
                    "vae_opt": ("VAE", )
                },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = ("LATENT", "MASK", )

    FUNCTION = "doit"

    OUTPUT_NODE = True

    CATEGORY = "ImpactPack/Util"

    def __init__(self):
        super().__init__()
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prev_hash = None
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))

    @staticmethod
    def load_image(pb_id):
        is_fail = False
        if pb_id not in core.preview_bridge_image_id_map:
            is_fail = True

        image_path, ui_item = core.preview_bridge_image_id_map[pb_id]

        if not os.path.isfile(image_path):
            is_fail = True

        if not is_fail:
            i = Image.open(image_path)
            i = ImageOps.exif_transpose(i)
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]

            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = None
        else:
            image = empty_pil_tensor()
            mask = None
            ui_item = {
                "filename": 'empty.png',
                "subfolder": '',
                "type": 'temp'
            }

        return image, mask, ui_item

    def doit(self, latent, image, preview_method, vae_opt=None, unique_id=None):
        need_refresh = False

        if unique_id not in core.preview_bridge_cache:
            need_refresh = True

        elif (core.preview_bridge_cache[unique_id][0] is not latent
              or (vae_opt is None and core.preview_bridge_cache[unique_id][2] is not None)
              or (vae_opt is None and core.preview_bridge_cache[unique_id][1] != preview_method)
              or (vae_opt is not None and core.preview_bridge_cache[unique_id][2] is not vae_opt)):
            need_refresh = True

        if not need_refresh:
            pixels, mask, path_item = PreviewBridge.load_image(image)

            if mask is None:
                mask = torch.ones(latent['samples'].shape[2:], dtype=torch.float32, device="cpu").unsqueeze(0)
                if 'noise_mask' in latent:
                    res_latent = latent.copy()
                    del res_latent['noise_mask']
                else:
                    res_latent = latent
            else:
                res_latent = latent.copy()
                res_latent['noise_mask'] = mask

            res_image = [path_item]
        else:
            decoded_image = decode_latent(latent, preview_method, vae_opt)

            if 'noise_mask' in latent:
                mask = latent['noise_mask']

                decoded_pil = to_pil(decoded_image)

                inverted_mask = 1 - mask  # invert
                resized_mask = resize_mask(inverted_mask, (decoded_image.shape[1], decoded_image.shape[2]))
                result_pil = apply_mask_alpha_to_pil(decoded_pil, resized_mask)

                full_output_folder, filename, counter, _, _ = folder_paths.get_save_image_path("PreviewBridge/PBL-"+self.prefix_append, folder_paths.get_temp_directory(), result_pil.size[0], result_pil.size[1])
                file = f"{filename}_{counter}.png"
                result_pil.save(os.path.join(full_output_folder, file), compress_level=4)
                res_image = [{
                                'filename': file,
                                'subfolder': 'PreviewBridge',
                                'type': 'temp',
                            }]
            else:
                mask = torch.ones(latent['samples'].shape[2:], dtype=torch.float32, device="cpu").unsqueeze(0)
                res = nodes.PreviewImage().save_images(decoded_image, filename_prefix="PreviewBridge/PBL-")
                res_image = res['ui']['images']

            path = os.path.join(folder_paths.get_temp_directory(), 'PreviewBridge', res_image[0]['filename'])
            core.set_previewbridge_image(unique_id, path, res_image[0])
            core.preview_bridge_image_id_map[image] = (path, res_image[0])
            core.preview_bridge_image_name_map[unique_id, path] = (image, res_image[0])
            core.preview_bridge_cache[unique_id] = (latent, preview_method, vae_opt, res_image)

            res_latent = latent

        return {
            "ui": {"images": res_image},
            "result": (res_latent, mask, ),
        }