File size: 22,452 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import impact.core as core
from impact.config import MAX_RESOLUTION
import impact.segs_nodes as segs_nodes
import impact.utils as utils
import torch
from impact.core import SEG


class SAMDetectorCombined:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "sam_model": ("SAM_MODEL", ),
                        "segs": ("SEGS", ),
                        "image": ("IMAGE", ),
                        "detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area",
                                            "mask-points", "mask-point-bbox", "none"],),
                        "dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                        "threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
                        "mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "mask_hint_use_negative": (["False", "Small", "Outter"], )
                      }
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, sam_model, segs, image, detection_hint, dilation,
             threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative):
        return (core.make_sam_mask(sam_model, segs, image, detection_hint, dilation,
                                   threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative), )


class SAMDetectorSegmented:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "sam_model": ("SAM_MODEL", ),
                        "segs": ("SEGS", ),
                        "image": ("IMAGE", ),
                        "detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area",
                                            "mask-points", "mask-point-bbox", "none"],),
                        "dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                        "threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
                        "mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "mask_hint_use_negative": (["False", "Small", "Outter"], )
                      }
                }

    RETURN_TYPES = ("MASK", "MASK")
    RETURN_NAMES = ("combined_mask", "batch_masks")
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, sam_model, segs, image, detection_hint, dilation,
             threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative):
        combined_mask, batch_masks = core.make_sam_mask_segmented(sam_model, segs, image, detection_hint, dilation,
                                                                  threshold, bbox_expansion, mask_hint_threshold,
                                                                  mask_hint_use_negative)
        return (combined_mask, batch_masks, )


class BboxDetectorForEach:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_detector": ("BBOX_DETECTOR", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                        "drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
                        "labels": ("STRING", {"multiline": True, "default": "all", "placeholder": "List the types of segments to be allowed, separated by commas"}),
                      },
                "optional": {"detailer_hook": ("DETAILER_HOOK",), }
                }

    RETURN_TYPES = ("SEGS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, bbox_detector, image, threshold, dilation, crop_factor, drop_size, labels=None, detailer_hook=None):
        if len(image) > 1:
            raise Exception('[Impact Pack] ERROR: BboxDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')

        segs = bbox_detector.detect(image, threshold, dilation, crop_factor, drop_size, detailer_hook)

        if labels is not None and labels != '':
            labels = labels.split(',')
            if len(labels) > 0:
                segs, _ = segs_nodes.SEGSLabelFilter.filter(segs, labels)

        return (segs, )


class SegmDetectorForEach:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "segm_detector": ("SEGM_DETECTOR", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                        "drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
                        "labels": ("STRING", {"multiline": True, "default": "all", "placeholder": "List the types of segments to be allowed, separated by commas"}),
                      },
                "optional": {"detailer_hook": ("DETAILER_HOOK",), }
                }

    RETURN_TYPES = ("SEGS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, segm_detector, image, threshold, dilation, crop_factor, drop_size, labels=None, detailer_hook=None):
        if len(image) > 1:
            raise Exception('[Impact Pack] ERROR: SegmDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')

        segs = segm_detector.detect(image, threshold, dilation, crop_factor, drop_size, detailer_hook)

        if labels is not None and labels != '':
            labels = labels.split(',')
            if len(labels) > 0:
                segs, _ = segs_nodes.SEGSLabelFilter.filter(segs, labels)

        return (segs, )


class SegmDetectorCombined:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "segm_detector": ("SEGM_DETECTOR", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                      }
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, segm_detector, image, threshold, dilation):
        mask = segm_detector.detect_combined(image, threshold, dilation)
        return (mask,)


class BboxDetectorCombined(SegmDetectorCombined):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_detector": ("BBOX_DETECTOR", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 4, "min": -512, "max": 512, "step": 1}),
                      }
                }

    def doit(self, bbox_detector, image, threshold, dilation):
        mask = bbox_detector.detect_combined(image, threshold, dilation)
        return (mask,)


class SimpleDetectorForEach:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_detector": ("BBOX_DETECTOR", ),
                        "image": ("IMAGE", ),

                        "bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "bbox_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),

                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                        "drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),

                        "sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "sub_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                        "sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),

                        "sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                      },
                "optional": {
                        "post_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                        "sam_model_opt": ("SAM_MODEL", ),
                        "segm_detector_opt": ("SEGM_DETECTOR", ),
                      }
                }

    RETURN_TYPES = ("SEGS",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    @staticmethod
    def detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
               sub_threshold, sub_dilation, sub_bbox_expansion,
               sam_mask_hint_threshold, post_dilation=0, sam_model_opt=None, segm_detector_opt=None,
               detailer_hook=None):
        if len(image) > 1:
            raise Exception('[Impact Pack] ERROR: SimpleDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')

        segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, crop_factor, drop_size, detailer_hook=detailer_hook)

        if sam_model_opt is not None:
            mask = core.make_sam_mask(sam_model_opt, segs, image, "center-1", sub_dilation,
                                      sub_threshold, sub_bbox_expansion, sam_mask_hint_threshold, False)
            segs = core.segs_bitwise_and_mask(segs, mask)
        elif segm_detector_opt is not None:
            segm_segs = segm_detector_opt.detect(image, sub_threshold, sub_dilation, crop_factor, drop_size, detailer_hook=detailer_hook)
            mask = core.segs_to_combined_mask(segm_segs)
            segs = core.segs_bitwise_and_mask(segs, mask)

        segs = core.dilate_segs(segs, post_dilation)

        return (segs,)

    def doit(self, bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
             sub_threshold, sub_dilation, sub_bbox_expansion,
             sam_mask_hint_threshold, post_dilation=0, sam_model_opt=None, segm_detector_opt=None):

        return SimpleDetectorForEach.detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
                                            sub_threshold, sub_dilation, sub_bbox_expansion,
                                            sam_mask_hint_threshold, post_dilation=post_dilation,
                                            sam_model_opt=sam_model_opt, segm_detector_opt=segm_detector_opt)


class SimpleDetectorForEachPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "detailer_pipe": ("DETAILER_PIPE", ),
                        "image": ("IMAGE", ),

                        "bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "bbox_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),

                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                        "drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),

                        "sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "sub_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                        "sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),

                        "sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                      },
                "optional": {
                        "post_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                      }
                }

    RETURN_TYPES = ("SEGS",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    def doit(self, detailer_pipe, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
             sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold, post_dilation=0):

        if len(image) > 1:
            raise Exception('[Impact Pack] ERROR: SimpleDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')

        model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe

        return SimpleDetectorForEach.detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
                                            sub_threshold, sub_dilation, sub_bbox_expansion,
                                            sam_mask_hint_threshold, post_dilation=post_dilation, sam_model_opt=sam_model_opt, segm_detector_opt=segm_detector_opt,
                                            detailer_hook=detailer_hook)


class SimpleDetectorForAnimateDiff:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_detector": ("BBOX_DETECTOR", ),
                        "image_frames": ("IMAGE", ),

                        "bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "bbox_dilation": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),

                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                        "drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),

                        "sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "sub_dilation": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
                        "sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),

                        "sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                      },
                "optional": {
                        "masking_mode": (["Pivot SEGS", "Combine neighboring frames", "Don't combine"],),
                        "segs_pivot": (["Combined mask", "1st frame mask"],),
                        "sam_model_opt": ("SAM_MODEL", ),
                        "segm_detector_opt": ("SEGM_DETECTOR", ),
                 }
                }

    RETURN_TYPES = ("SEGS",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Detector"

    @staticmethod
    def detect(bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
               sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
               masking_mode="Pivot SEGS", segs_pivot="Combined mask", sam_model_opt=None, segm_detector_opt=None):

        h = image_frames.shape[1]
        w = image_frames.shape[2]

        # gather segs for all frames
        segs_by_frames = []
        for image in image_frames:
            image = image.unsqueeze(0)
            segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, crop_factor, drop_size)

            if sam_model_opt is not None:
                mask = core.make_sam_mask(sam_model_opt, segs, image, "center-1", sub_dilation,
                                          sub_threshold, sub_bbox_expansion, sam_mask_hint_threshold, False)
                segs = core.segs_bitwise_and_mask(segs, mask)
            elif segm_detector_opt is not None:
                segm_segs = segm_detector_opt.detect(image, sub_threshold, sub_dilation, crop_factor, drop_size)
                mask = core.segs_to_combined_mask(segm_segs)
                segs = core.segs_bitwise_and_mask(segs, mask)

            segs_by_frames.append(segs)

        def get_masked_frames():
            masks_by_frame = []
            for i, segs in enumerate(segs_by_frames):
                masks_in_frame = segs_nodes.SEGSToMaskList().doit(segs)[0]
                current_frame_mask = (masks_in_frame[0] * 255).to(torch.uint8)

                for mask in masks_in_frame[1:]:
                    current_frame_mask |= (mask * 255).to(torch.uint8)

                current_frame_mask = (current_frame_mask/255.0).to(torch.float32)
                current_frame_mask = utils.to_binary_mask(current_frame_mask, 0.1)[0]

                masks_by_frame.append(current_frame_mask)

            return masks_by_frame

        def get_empty_mask():
            return torch.zeros((h, w), dtype=torch.float32, device="cpu")

        def get_neighboring_mask_at(i, masks_by_frame):
            prv = masks_by_frame[i-1] if i > 1 else get_empty_mask()
            cur = masks_by_frame[i]
            nxt = masks_by_frame[i-1] if i > 1 else get_empty_mask()

            prv = prv if prv is not None else get_empty_mask()
            cur = cur.clone() if cur is not None else get_empty_mask()
            nxt = nxt if nxt is not None else get_empty_mask()

            return prv, cur, nxt

        def get_merged_neighboring_mask(masks_by_frame):
            if len(masks_by_frame) <= 1:
                return masks_by_frame

            result = []
            for i in range(0, len(masks_by_frame)):
                prv, cur, nxt = get_neighboring_mask_at(i, masks_by_frame)
                cur = (cur * 255).to(torch.uint8)
                cur |= (prv * 255).to(torch.uint8)
                cur |= (nxt * 255).to(torch.uint8)
                cur = (cur / 255.0).to(torch.float32)
                cur = utils.to_binary_mask(cur, 0.1)[0]
                result.append(cur)

            return result

        def get_whole_merged_mask():
            all_masks = []
            for segs in segs_by_frames:
                all_masks += segs_nodes.SEGSToMaskList().doit(segs)[0]

            merged_mask = (all_masks[0] * 255).to(torch.uint8)
            for mask in all_masks[1:]:
                merged_mask |= (mask * 255).to(torch.uint8)

            merged_mask = (merged_mask / 255.0).to(torch.float32)
            merged_mask = utils.to_binary_mask(merged_mask, 0.1)[0]
            return merged_mask

        def get_pivot_segs():
            if segs_pivot == "1st frame mask":
                return segs_by_frames[0][1]
            else:
                merged_mask = get_whole_merged_mask()
                return segs_nodes.MaskToSEGS().doit(merged_mask, False, crop_factor, False, drop_size, contour_fill=True)[0]

        def get_merged_neighboring_segs():
            pivot_segs = get_pivot_segs()

            masks_by_frame = get_masked_frames()
            masks_by_frame = get_merged_neighboring_mask(masks_by_frame)

            new_segs = []
            for seg in pivot_segs[1]:
                cropped_mask = torch.zeros(seg.cropped_mask.shape, dtype=torch.float32, device="cpu").unsqueeze(0)
                pivot_mask = torch.from_numpy(seg.cropped_mask)
                x1, y1, x2, y2 = seg.crop_region
                for mask in masks_by_frame:
                    cropped_mask_at_frame = (mask[y1:y2, x1:x2] * pivot_mask).unsqueeze(0)
                    cropped_mask = torch.cat((cropped_mask, cropped_mask_at_frame), dim=0)

                if len(cropped_mask) > 1:
                    cropped_mask = cropped_mask[1:]

                new_seg = SEG(seg.cropped_image, cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper)
                new_segs.append(new_seg)

            return pivot_segs[0], new_segs

        def get_separated_segs():
            pivot_segs = get_pivot_segs()

            masks_by_frame = get_masked_frames()

            new_segs = []
            for seg in pivot_segs[1]:
                cropped_mask = torch.zeros(seg.cropped_mask.shape, dtype=torch.float32, device="cpu").unsqueeze(0)
                x1, y1, x2, y2 = seg.crop_region
                for mask in masks_by_frame:
                    cropped_mask_at_frame = mask[y1:y2, x1:x2]
                    cropped_mask = torch.cat((cropped_mask, cropped_mask_at_frame), dim=0)

                new_seg = SEG(seg.cropped_image, cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper)
                new_segs.append(new_seg)

            return pivot_segs[0], new_segs

        # create result mask
        if masking_mode == "Pivot SEGS":
            return (get_pivot_segs(), )

        elif masking_mode == "Combine neighboring frames":
            return (get_merged_neighboring_segs(), )

        else: # elif masking_mode == "Don't combine":
            return (get_separated_segs(), )

    def doit(self, bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
             sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
             masking_mode="Pivot SEGS", segs_pivot="Combined mask", sam_model_opt=None, segm_detector_opt=None):

        return SimpleDetectorForAnimateDiff.detect(bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
                                                   sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
                                                   masking_mode, segs_pivot, sam_model_opt, segm_detector_opt)