Spaces:
Running
Running
File size: 9,003 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import folder_paths
import impact.mmdet_nodes as mmdet_nodes
from impact.utils import *
from impact.core import SEG
import impact.core as core
import nodes
class NO_BBOX_MODEL:
pass
class NO_SEGM_MODEL:
pass
class MMDetLoader:
@classmethod
def INPUT_TYPES(s):
bboxs = ["bbox/"+x for x in folder_paths.get_filename_list("mmdets_bbox")]
segms = ["segm/"+x for x in folder_paths.get_filename_list("mmdets_segm")]
return {"required": {"model_name": (bboxs + segms, )}}
RETURN_TYPES = ("BBOX_MODEL", "SEGM_MODEL")
FUNCTION = "load_mmdet"
CATEGORY = "ImpactPack/Legacy"
def load_mmdet(self, model_name):
mmdet_path = folder_paths.get_full_path("mmdets", model_name)
model = mmdet_nodes.load_mmdet(mmdet_path)
if model_name.startswith("bbox"):
return model, NO_SEGM_MODEL()
else:
return NO_BBOX_MODEL(), model
class BboxDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_model": ("BBOX_MODEL", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
}
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Legacy"
@staticmethod
def detect(bbox_model, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None):
mmdet_results = mmdet_nodes.inference_bbox(bbox_model, image, threshold)
segmasks = core.create_segmasks(mmdet_results)
if dilation > 0:
segmasks = dilate_masks(segmasks, dilation)
items = []
h = image.shape[1]
w = image.shape[2]
for x in segmasks:
item_bbox = x[0]
item_mask = x[1]
y1, x1, y2, x2 = item_bbox
if x2 - x1 > drop_size and y2 - y1 > drop_size:
crop_region = make_crop_region(w, h, item_bbox, crop_factor)
cropped_image = crop_image(image, crop_region)
cropped_mask = crop_ndarray2(item_mask, crop_region)
confidence = x[2]
# bbox_size = (item_bbox[2]-item_bbox[0],item_bbox[3]-item_bbox[1]) # (w,h)
item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None)
items.append(item)
shape = h, w
return shape, items
def doit(self, bbox_model, image, threshold, dilation, crop_factor):
return (BboxDetectorForEach.detect(bbox_model, image, threshold, dilation, crop_factor), )
class SegmDetectorCombined:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segm_model": ("SEGM_MODEL", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Legacy"
def doit(self, segm_model, image, threshold, dilation):
mmdet_results = mmdet_nodes.inference_segm(image, segm_model, threshold)
segmasks = core.create_segmasks(mmdet_results)
if dilation > 0:
segmasks = dilate_masks(segmasks, dilation)
mask = combine_masks(segmasks)
return (mask,)
class BboxDetectorCombined(SegmDetectorCombined):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_model": ("BBOX_MODEL", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 4, "min": 0, "max": 255, "step": 1}),
}
}
def doit(self, bbox_model, image, threshold, dilation):
mmdet_results = mmdet_nodes.inference_bbox(bbox_model, image, threshold)
segmasks = core.create_segmasks(mmdet_results)
if dilation > 0:
segmasks = dilate_masks(segmasks, dilation)
mask = combine_masks(segmasks)
return (mask,)
class SegmDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segm_model": ("SEGM_MODEL", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
}
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Legacy"
def doit(self, segm_model, image, threshold, dilation, crop_factor):
mmdet_results = mmdet_nodes.inference_segm(image, segm_model, threshold)
segmasks = core.create_segmasks(mmdet_results)
if dilation > 0:
segmasks = dilate_masks(segmasks, dilation)
items = []
h = image.shape[1]
w = image.shape[2]
for x in segmasks:
item_bbox = x[0]
item_mask = x[1]
crop_region = make_crop_region(w, h, item_bbox, crop_factor)
cropped_image = crop_image(image, crop_region)
cropped_mask = crop_ndarray2(item_mask, crop_region)
confidence = x[2]
item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None)
items.append(item)
shape = h,w
return ((shape, items), )
class SegsMaskCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segs": ("SEGS", ),
"image": ("IMAGE", ),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Legacy"
@staticmethod
def combine(segs, image):
h = image.shape[1]
w = image.shape[2]
mask = np.zeros((h, w), dtype=np.uint8)
for seg in segs[1]:
cropped_mask = seg.cropped_mask
crop_region = seg.crop_region
mask[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |= (cropped_mask * 255).astype(np.uint8)
return torch.from_numpy(mask.astype(np.float32) / 255.0)
def doit(self, segs, image):
return (SegsMaskCombine.combine(segs, image), )
class MaskPainter(nodes.PreviewImage):
@classmethod
def INPUT_TYPES(s):
return {"required": {"images": ("IMAGE",), },
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
},
"optional": {"mask_image": ("IMAGE_PATH",), },
"optional": {"image": (["#placeholder"], )},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "save_painted_images"
CATEGORY = "ImpactPack/Legacy"
def save_painted_images(self, images, filename_prefix="impact-mask",
prompt=None, extra_pnginfo=None, mask_image=None, image=None):
if image == "#placeholder" or image['image_hash'] != id(images):
# new input image
res = self.save_images(images, filename_prefix, prompt, extra_pnginfo)
item = res['ui']['images'][0]
if not item['filename'].endswith(']'):
filepath = f"{item['filename']} [{item['type']}]"
else:
filepath = item['filename']
_, mask = nodes.LoadImage().load_image(filepath)
res['ui']['aux'] = [id(images), res['ui']['images']]
res['result'] = (mask, )
return res
else:
# new mask
if '0' in image: # fallback
image = image['0']
forward = {'filename': image['forward_filename'],
'subfolder': image['forward_subfolder'],
'type': image['forward_type'], }
res = {'ui': {'images': [forward]}}
imgpath = ""
if 'subfolder' in image and image['subfolder'] != "":
imgpath = image['subfolder'] + "/"
imgpath += f"{image['filename']}"
if 'type' in image and image['type'] != "":
imgpath += f" [{image['type']}]"
res['ui']['aux'] = [id(images), [forward]]
_, mask = nodes.LoadImage().load_image(imgpath)
res['result'] = (mask, )
return res
|