File size: 9,003 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import folder_paths

import impact.mmdet_nodes as mmdet_nodes
from impact.utils import *
from impact.core import SEG
import impact.core as core
import nodes

class NO_BBOX_MODEL:
    pass


class NO_SEGM_MODEL:
    pass


class MMDetLoader:
    @classmethod
    def INPUT_TYPES(s):
        bboxs = ["bbox/"+x for x in folder_paths.get_filename_list("mmdets_bbox")]
        segms = ["segm/"+x for x in folder_paths.get_filename_list("mmdets_segm")]
        return {"required": {"model_name": (bboxs + segms, )}}
    RETURN_TYPES = ("BBOX_MODEL", "SEGM_MODEL")
    FUNCTION = "load_mmdet"

    CATEGORY = "ImpactPack/Legacy"

    def load_mmdet(self, model_name):
        mmdet_path = folder_paths.get_full_path("mmdets", model_name)
        model = mmdet_nodes.load_mmdet(mmdet_path)

        if model_name.startswith("bbox"):
            return model, NO_SEGM_MODEL()
        else:
            return NO_BBOX_MODEL(), model


class BboxDetectorForEach:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_model": ("BBOX_MODEL", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                      }
                }

    RETURN_TYPES = ("SEGS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Legacy"

    @staticmethod
    def detect(bbox_model, image, threshold, dilation, crop_factor, drop_size=1, detailer_hook=None):
        mmdet_results = mmdet_nodes.inference_bbox(bbox_model, image, threshold)
        segmasks = core.create_segmasks(mmdet_results)

        if dilation > 0:
            segmasks = dilate_masks(segmasks, dilation)

        items = []
        h = image.shape[1]
        w = image.shape[2]
        for x in segmasks:
            item_bbox = x[0]
            item_mask = x[1]

            y1, x1, y2, x2 = item_bbox

            if x2 - x1 > drop_size and y2 - y1 > drop_size:
                crop_region = make_crop_region(w, h, item_bbox, crop_factor)
                cropped_image = crop_image(image, crop_region)
                cropped_mask = crop_ndarray2(item_mask, crop_region)
                confidence = x[2]
                # bbox_size = (item_bbox[2]-item_bbox[0],item_bbox[3]-item_bbox[1]) # (w,h)

                item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None)
                items.append(item)

        shape = h, w
        return shape, items

    def doit(self, bbox_model, image, threshold, dilation, crop_factor):
        return (BboxDetectorForEach.detect(bbox_model, image, threshold, dilation, crop_factor), )


class SegmDetectorCombined:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "segm_model": ("SEGM_MODEL", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
                      }
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Legacy"

    def doit(self, segm_model, image, threshold, dilation):
        mmdet_results = mmdet_nodes.inference_segm(image, segm_model, threshold)
        segmasks = core.create_segmasks(mmdet_results)
        if dilation > 0:
            segmasks = dilate_masks(segmasks, dilation)

        mask = combine_masks(segmasks)
        return (mask,)


class BboxDetectorCombined(SegmDetectorCombined):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "bbox_model": ("BBOX_MODEL", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 4, "min": 0, "max": 255, "step": 1}),
                      }
                }

    def doit(self, bbox_model, image, threshold, dilation):
        mmdet_results = mmdet_nodes.inference_bbox(bbox_model, image, threshold)
        segmasks = core.create_segmasks(mmdet_results)
        if dilation > 0:
            segmasks = dilate_masks(segmasks, dilation)

        mask = combine_masks(segmasks)
        return (mask,)


class SegmDetectorForEach:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "segm_model": ("SEGM_MODEL", ),
                        "image": ("IMAGE", ),
                        "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "dilation": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
                        "crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
                      }
                }

    RETURN_TYPES = ("SEGS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Legacy"

    def doit(self, segm_model, image, threshold, dilation, crop_factor):
        mmdet_results = mmdet_nodes.inference_segm(image, segm_model, threshold)
        segmasks = core.create_segmasks(mmdet_results)

        if dilation > 0:
            segmasks = dilate_masks(segmasks, dilation)

        items = []
        h = image.shape[1]
        w = image.shape[2]
        for x in segmasks:
            item_bbox = x[0]
            item_mask = x[1]

            crop_region = make_crop_region(w, h, item_bbox, crop_factor)
            cropped_image = crop_image(image, crop_region)
            cropped_mask = crop_ndarray2(item_mask, crop_region)
            confidence = x[2]

            item = SEG(cropped_image, cropped_mask, confidence, crop_region, item_bbox, None, None)
            items.append(item)

        shape = h,w
        return ((shape, items), )


class SegsMaskCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "segs": ("SEGS", ),
                        "image": ("IMAGE", ),
                      }
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Legacy"

    @staticmethod
    def combine(segs, image):
        h = image.shape[1]
        w = image.shape[2]

        mask = np.zeros((h, w), dtype=np.uint8)

        for seg in segs[1]:
            cropped_mask = seg.cropped_mask
            crop_region = seg.crop_region
            mask[crop_region[1]:crop_region[3], crop_region[0]:crop_region[2]] |= (cropped_mask * 255).astype(np.uint8)

        return torch.from_numpy(mask.astype(np.float32) / 255.0)

    def doit(self, segs, image):
        return (SegsMaskCombine.combine(segs, image), )


class MaskPainter(nodes.PreviewImage):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"images": ("IMAGE",), },
                "hidden": {
                    "prompt": "PROMPT",
                    "extra_pnginfo": "EXTRA_PNGINFO",
                },
                "optional": {"mask_image": ("IMAGE_PATH",), },
                "optional": {"image": (["#placeholder"], )},
                }

    RETURN_TYPES = ("MASK",)

    FUNCTION = "save_painted_images"

    CATEGORY = "ImpactPack/Legacy"

    def save_painted_images(self, images, filename_prefix="impact-mask",
                            prompt=None, extra_pnginfo=None, mask_image=None, image=None):
        if image == "#placeholder" or image['image_hash'] != id(images):
            # new input image
            res = self.save_images(images, filename_prefix, prompt, extra_pnginfo)

            item = res['ui']['images'][0]

            if not item['filename'].endswith(']'):
                filepath = f"{item['filename']} [{item['type']}]"
            else:
                filepath = item['filename']

            _, mask = nodes.LoadImage().load_image(filepath)

            res['ui']['aux'] = [id(images), res['ui']['images']]
            res['result'] = (mask, )

            return res

        else:
            # new mask
            if '0' in image:  # fallback
                image = image['0']

            forward = {'filename': image['forward_filename'],
                       'subfolder': image['forward_subfolder'],
                       'type': image['forward_type'], }

            res = {'ui': {'images': [forward]}}

            imgpath = ""
            if 'subfolder' in image and image['subfolder'] != "":
                imgpath = image['subfolder'] + "/"

            imgpath += f"{image['filename']}"

            if 'type' in image and image['type'] != "":
                imgpath += f" [{image['type']}]"

            res['ui']['aux'] = [id(images), [forward]]
            _, mask = nodes.LoadImage().load_image(imgpath)
            res['result'] = (mask, )

            return res