Spaces:
Running
Running
File size: 10,114 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import itertools
import numpy as np
import torch
from PIL import Image, ImageOps
import cv2
import folder_paths
from comfy.utils import common_upscale
from .logger import logger
from .utils import BIGMAX, DIMMAX, calculate_file_hash, get_sorted_dir_files_from_directory, get_audio, lazy_eval, hash_path, validate_path
video_extensions = ['webm', 'mp4', 'mkv', 'gif']
def is_gif(filename) -> bool:
file_parts = filename.split('.')
return len(file_parts) > 1 and file_parts[-1] == "gif"
def target_size(width, height, force_size, custom_width, custom_height) -> tuple[int, int]:
if force_size == "Custom":
return (custom_width, custom_height)
elif force_size == "Custom Height":
force_size = "?x"+str(custom_height)
elif force_size == "Custom Width":
force_size = str(custom_width)+"x?"
if force_size != "Disabled":
force_size = force_size.split("x")
if force_size[0] == "?":
width = (width*int(force_size[1]))//height
#Limit to a multple of 8 for latent conversion
width = int(width)+4 & ~7
height = int(force_size[1])
elif force_size[1] == "?":
height = (height*int(force_size[0]))//width
height = int(height)+4 & ~7
width = int(force_size[0])
else:
width = int(force_size[0])
height = int(force_size[1])
return (width, height)
def cv_frame_generator(video, force_rate, frame_load_cap, skip_first_frames,
select_every_nth, batch_manager=None, unique_id=None):
try:
video_cap = cv2.VideoCapture(video)
if not video_cap.isOpened():
raise ValueError(f"{video} could not be loaded with cv.")
# set video_cap to look at start_index frame
total_frame_count = 0
total_frames_evaluated = -1
frames_added = 0
base_frame_time = 1/video_cap.get(cv2.CAP_PROP_FPS)
width = video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
prev_frame = None
if force_rate == 0:
target_frame_time = base_frame_time
else:
target_frame_time = 1/force_rate
yield (width, height, target_frame_time)
time_offset=target_frame_time - base_frame_time
while video_cap.isOpened():
if time_offset < target_frame_time:
is_returned = video_cap.grab()
# if didn't return frame, video has ended
if not is_returned:
break
time_offset += base_frame_time
if time_offset < target_frame_time:
continue
time_offset -= target_frame_time
# if not at start_index, skip doing anything with frame
total_frame_count += 1
if total_frame_count <= skip_first_frames:
continue
else:
total_frames_evaluated += 1
# if should not be selected, skip doing anything with frame
if total_frames_evaluated%select_every_nth != 0:
continue
# opencv loads images in BGR format (yuck), so need to convert to RGB for ComfyUI use
# follow up: can videos ever have an alpha channel?
# To my testing: No. opencv has no support for alpha
unused, frame = video_cap.retrieve()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# convert frame to comfyui's expected format
# TODO: frame contains no exif information. Check if opencv2 has already applied
frame = np.array(frame, dtype=np.float32) / 255.0
if prev_frame is not None:
inp = yield prev_frame
if inp is not None:
#ensure the finally block is called
return
prev_frame = frame
frames_added += 1
# if cap exists and we've reached it, stop processing frames
if frame_load_cap > 0 and frames_added >= frame_load_cap:
break
if batch_manager is not None:
batch_manager.inputs.pop(unique_id)
batch_manager.has_closed_inputs = True
if prev_frame is not None:
yield prev_frame
finally:
video_cap.release()
def load_video_cv(video: str, force_rate: int, force_size: str,
custom_width: int,custom_height: int, frame_load_cap: int,
skip_first_frames: int, select_every_nth: int,
batch_manager=None, unique_id=None):
if batch_manager is None or unique_id not in batch_manager.inputs:
gen = cv_frame_generator(video, force_rate, frame_load_cap, skip_first_frames,
select_every_nth, batch_manager, unique_id)
(width, height, target_frame_time) = next(gen)
width = int(width)
height = int(height)
if batch_manager is not None:
batch_manager.inputs[unique_id] = (gen, width, height, target_frame_time)
else:
(gen, width, height, target_frame_time) = batch_manager.inputs[unique_id]
if batch_manager is not None:
gen = itertools.islice(gen, batch_manager.frames_per_batch)
#Some minor wizardry to eliminate a copy and reduce max memory by a factor of ~2
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3)))))
if len(images) == 0:
raise RuntimeError("No frames generated")
if force_size != "Disabled":
new_size = target_size(width, height, force_size, custom_width, custom_height)
if new_size[0] != width or new_size[1] != height:
s = images.movedim(-1,1)
s = common_upscale(s, new_size[0], new_size[1], "lanczos", "center")
images = s.movedim(1,-1)
#Setup lambda for lazy audio capture
audio = lambda : get_audio(video, skip_first_frames * target_frame_time,
frame_load_cap*target_frame_time*select_every_nth)
return (images, len(images), lazy_eval(audio))
class LoadVideoUpload:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1] in video_extensions):
files.append(f)
return {"required": {
"video": (sorted(files),),
"force_rate": ("INT", {"default": 0, "min": 0, "max": 60, "step": 1}),
"force_size": (["Disabled", "Custom Height", "Custom Width", "Custom", "256x?", "?x256", "256x256", "512x?", "?x512", "512x512"],),
"custom_width": ("INT", {"default": 512, "min": 0, "max": DIMMAX, "step": 8}),
"custom_height": ("INT", {"default": 512, "min": 0, "max": DIMMAX, "step": 8}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
},
"optional": {
"batch_manager": ("VHS_BatchManager",)
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = ("IMAGE", "INT", "VHS_AUDIO", )
RETURN_NAMES = ("IMAGE", "frame_count", "audio",)
FUNCTION = "load_video"
def load_video(self, **kwargs):
kwargs['video'] = folder_paths.get_annotated_filepath(kwargs['video'].strip("\""))
return load_video_cv(**kwargs)
@classmethod
def IS_CHANGED(s, video, **kwargs):
image_path = folder_paths.get_annotated_filepath(video)
return calculate_file_hash(image_path)
@classmethod
def VALIDATE_INPUTS(s, video, force_size, **kwargs):
if not folder_paths.exists_annotated_filepath(video):
return "Invalid video file: {}".format(video)
return True
class LoadVideoPath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video": ("STRING", {"default": "X://insert/path/here.mp4", "vhs_path_extensions": video_extensions}),
"force_rate": ("INT", {"default": 0, "min": 0, "max": 60, "step": 1}),
"force_size": (["Disabled", "Custom Height", "Custom Width", "Custom", "256x?", "?x256", "256x256", "512x?", "?x512", "512x512"],),
"custom_width": ("INT", {"default": 512, "min": 0, "max": DIMMAX, "step": 8}),
"custom_height": ("INT", {"default": 512, "min": 0, "max": DIMMAX, "step": 8}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
},
"optional": {
"batch_manager": ("VHS_BatchManager",)
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = ("IMAGE", "INT", "VHS_AUDIO", )
RETURN_NAMES = ("IMAGE", "frame_count", "audio",)
FUNCTION = "load_video"
def load_video(self, **kwargs):
if kwargs['video'] is None or validate_path(kwargs['video']) != True:
raise Exception("video is not a valid path: " + kwargs['video'])
return load_video_cv(**kwargs)
@classmethod
def IS_CHANGED(s, video, **kwargs):
return hash_path(video)
@classmethod
def VALIDATE_INPUTS(s, video, **kwargs):
return validate_path(video, allow_none=True)
|