File size: 20,052 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# These nodes were made using code from the Deforum extension for A1111 webui
# You can find the project here: https://github.com/deforum-art/sd-webui-deforum

import numexpr
import torch
import numpy as np
import pandas as pd
import re

from .ScheduleFuncs import *

def prepare_batch_prompt(prompt_series, max_frames, frame_idx, prompt_weight_1=0, prompt_weight_2=0, prompt_weight_3=0,
                         prompt_weight_4=0):  # calculate expressions from the text input and return a string
    max_f = max_frames - 1
    pattern = r'`.*?`'  # set so the expression will be read between two backticks (``)
    regex = re.compile(pattern)
    prompt_parsed = str(prompt_series)

    for match in regex.finditer(prompt_parsed):
        matched_string = match.group(0)
        parsed_string = matched_string.replace('t', f'{frame_idx}').replace("pw_a", f"{prompt_weight_1}").replace("pw_b",
                                                    f"{prompt_weight_2}").replace("pw_c", f"{prompt_weight_3}").replace("pw_d",
                                                    f"{prompt_weight_4}").replace("max_f",
                                                    f"{max_f}").replace('`', '')  # replace t, max_f and `` respectively
        parsed_value = numexpr.evaluate(parsed_string)
        prompt_parsed = prompt_parsed.replace(matched_string, str(parsed_value))
    return prompt_parsed.strip()

def batch_split_weighted_subprompts(text, pre_text, app_text):
    pos = {}
    neg = {}
    pre_text = str(pre_text)
    app_text = str(app_text)

    if "--neg" in pre_text:
        pre_pos, pre_neg = pre_text.split("--neg")
    else:
        pre_pos, pre_neg = pre_text, ""

    if "--neg" in app_text:
        app_pos, app_neg = app_text.split("--neg")
    else:
        app_pos, app_neg = app_text, ""

    for frame, prompt in text.items():
        negative_prompts = ""
        positive_prompts = ""
        prompt_split = prompt.split("--neg")

        if len(prompt_split) > 1:
            positive_prompts, negative_prompts = prompt_split[0], prompt_split[1]
        else:
            positive_prompts = prompt_split[0]

        pos[frame] = ""
        neg[frame] = ""
        pos[frame] += (str(pre_pos) + " " + positive_prompts + " " + str(app_pos))
        neg[frame] += (str(pre_neg) + " " + negative_prompts + " " + str(app_neg))
        if pos[frame].endswith('0'):
            pos[frame] = pos[frame][:-1]
        if neg[frame].endswith('0'):
            neg[frame] = neg[frame][:-1]
    return pos, neg

def interpolate_prompt_series(animation_prompts, max_frames, start_frame, pre_text, app_text, prompt_weight_1=[],
                              prompt_weight_2=[], prompt_weight_3=[], prompt_weight_4=[], Is_print = False):

    max_f = max_frames  # needed for numexpr even though it doesn't look like it's in use.
    parsed_animation_prompts = {}


    for key, value in animation_prompts.items():
        if check_is_number(key):  # default case 0:(1 + t %5), 30:(5-t%2)
            parsed_animation_prompts[key] = value
        else:  # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
            parsed_animation_prompts[int(numexpr.evaluate(key))] = value

    sorted_prompts = sorted(parsed_animation_prompts.items(), key=lambda item: int(item[0]))

    # Automatically set the first keyframe to 0 if it's missing
    if sorted_prompts[0][0] != "0":
        sorted_prompts.insert(0, ("0", sorted_prompts[0][1]))

    # Automatically set the last keyframe to the maximum number of frames
    if sorted_prompts[-1][0] != str(max_frames):
        sorted_prompts.append((str(max_frames), sorted_prompts[-1][1]))
    # Setup containers for interpolated prompts
    cur_prompt_series = pd.Series([np.nan for a in range(max_frames)])
    nxt_prompt_series = pd.Series([np.nan for a in range(max_frames)])

    # simple array for strength values
    weight_series = [np.nan] * max_frames

    # in case there is only one keyed promt, set all prompts to that prompt
    if len(sorted_prompts) == 1:
        for i in range(0, len(cur_prompt_series) - 1):
            current_prompt = sorted_prompts[0][1]
            cur_prompt_series[i] = str(current_prompt)
            nxt_prompt_series[i] = str(current_prompt)

    # Initialized outside of loop for nan check
    current_key = 0
    next_key = 0

    if type(prompt_weight_1) in {int, float}:
       prompt_weight_1 = tuple([prompt_weight_1] * max_frames)

    if type(prompt_weight_2) in {int, float}:
       prompt_weight_2 = tuple([prompt_weight_2] * max_frames)

    if type(prompt_weight_3) in {int, float}:
       prompt_weight_3 = tuple([prompt_weight_3] * max_frames)

    if type(prompt_weight_4) in {int, float}:
       prompt_weight_4 = tuple([prompt_weight_4] * max_frames)

    # For every keyframe prompt except the last
    for i in range(0, len(sorted_prompts) - 1):
        # Get current and next keyframe
        current_key = int(sorted_prompts[i][0])
        next_key = int(sorted_prompts[i + 1][0])

        # Ensure there's no weird ordering issues or duplication in the animation prompts
        # (unlikely because we sort above, and the json parser will strip dupes)
        if current_key >= next_key:
            print(
                f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
            continue

        # Get current and next keyframes' positive and negative prompts (if any)
        current_prompt = sorted_prompts[i][1]
        next_prompt = sorted_prompts[i + 1][1]

        # Calculate how much to shift the weight from current to next prompt at each frame.
        weight_step = 1 / (next_key - current_key)

        for f in range(max(current_key, 0), min(next_key, len(cur_prompt_series))):
            next_weight = weight_step * (f - current_key)
            current_weight = 1 - next_weight

            # add the appropriate prompts and weights to their respective containers.
            weight_series[f] = 0.0
            cur_prompt_series[f] = str(current_prompt)
            nxt_prompt_series[f] = str(next_prompt)

            weight_series[f] += current_weight

        current_key = next_key
        next_key = max_frames
        current_weight = 0.0

    index_offset = 0
    # Evaluate the current and next prompt's expressions
    for i in range(start_frame, len(cur_prompt_series)):
        cur_prompt_series[i] = prepare_batch_prompt(cur_prompt_series[i], max_frames, i, prompt_weight_1[i],
                                                    prompt_weight_2[i], prompt_weight_3[i], prompt_weight_4[i])
        nxt_prompt_series[i] = prepare_batch_prompt(nxt_prompt_series[i], max_frames, i, prompt_weight_1[i],
                                                    prompt_weight_2[i], prompt_weight_3[i], prompt_weight_4[i])
        if Is_print == True:
            # Show the to/from prompts with evaluated expressions for transparency.
            print("\n", "Max Frames: ", max_frames, "\n", "frame index: ", (start_frame + i), "\n", "Current Prompt: ",
                  cur_prompt_series[i], "\n", "Next Prompt: ", nxt_prompt_series[i], "\n", "Strength : ",
                  weight_series[i], "\n")
        index_offset = index_offset + 1



    # Output methods depending if the prompts are the same or if the current frame is a keyframe.
    # if it is an in-between frame and the prompts differ, composable diffusion will be performed.
    return (cur_prompt_series, nxt_prompt_series, weight_series)


def BatchPoolAnimConditioning(cur_prompt_series, nxt_prompt_series, weight_series, clip):
    pooled_out = []
    cond_out = []

    for i in range(len(cur_prompt_series)):
        tokens = clip.tokenize(str(cur_prompt_series[i]))
        cond_to, pooled_to = clip.encode_from_tokens(tokens, return_pooled=True)

        if i < len(nxt_prompt_series):
            tokens = clip.tokenize(str(nxt_prompt_series[i]))
            cond_from, pooled_from = clip.encode_from_tokens(tokens, return_pooled=True)
        else:
            cond_from, pooled_from = torch.zeros_like(cond_to), torch.zeros_like(pooled_to)

        interpolated_conditioning = addWeighted([[cond_to, {"pooled_output": pooled_to}]],
                                                [[cond_from, {"pooled_output": pooled_from}]],
                                                weight_series[i])

        interpolated_cond = interpolated_conditioning[0][0]
        interpolated_pooled = interpolated_conditioning[0][1].get("pooled_output", pooled_from)

        cond_out.append(interpolated_cond)
        pooled_out.append(interpolated_pooled)

    final_pooled_output = torch.cat(pooled_out, dim=0)
    final_conditioning = torch.cat(cond_out, dim=0)

    return [[final_conditioning, {"pooled_output": final_pooled_output}]]





def BatchGLIGENConditioning(cur_prompt_series, nxt_prompt_series, weight_series, clip):
    pooled_out = []
    cond_out = []

    for i in range(len(cur_prompt_series)):
        tokens = clip.tokenize(str(cur_prompt_series[i]))
        cond_to, pooled_to = clip.encode_from_tokens(tokens, return_pooled=True)

        tokens = clip.tokenize(str(nxt_prompt_series[i]))
        cond_from, pooled_from = clip.encode_from_tokens(tokens, return_pooled=True)

        interpolated_conditioning = addWeighted([[cond_to, {"pooled_output": pooled_to}]],
                                                [[cond_from, {"pooled_output": pooled_from}]],
                                                weight_series[i])

        interpolated_cond = interpolated_conditioning[0][0]
        interpolated_pooled = interpolated_conditioning[0][1].get("pooled_output", pooled_from)

        pooled_out.append(interpolated_pooled)
        cond_out.append(interpolated_cond)

    final_pooled_output = torch.cat(pooled_out, dim=0)
    final_conditioning = torch.cat(cond_out, dim=0)

    return cond_out, pooled_out

def BatchPoolAnimConditioningSDXL(cur_prompt_series, nxt_prompt_series, weight_series, clip):
    pooled_out = []
    cond_out = []

    for i in range(len(cur_prompt_series)):
        interpolated_conditioning = addWeighted(cur_prompt_series[i],
                                                nxt_prompt_series[i],
                                                weight_series[i])

        interpolated_cond = interpolated_conditioning[0][0]
        interpolated_pooled = interpolated_conditioning[0][1].get("pooled_output")

        pooled_out.append(interpolated_pooled)
        cond_out.append(interpolated_cond)

    final_pooled_output = torch.cat(pooled_out, dim=0)
    final_conditioning = torch.cat(cond_out, dim=0)

    return [[final_conditioning, {"pooled_output": final_pooled_output}]]


def BatchInterpolatePromptsSDXL(animation_promptsG, animation_promptsL, max_frames, clip, app_text_G,
                             app_text_L, pre_text_G, pre_text_L, pw_a, pw_b, pw_c, pw_d, width, height, crop_w,
                             crop_h, target_width, target_height, Is_print = False):

    # parse the conditioning strength and determine in-betweens.
    # Get prompts sorted by keyframe
    max_f = max_frames  # needed for numexpr even though it doesn't look like it's in use.
    parsed_animation_promptsG = {}
    parsed_animation_promptsL = {}
    for key, value in animation_promptsG.items():
        if check_is_number(key):  # default case 0:(1 + t %5), 30:(5-t%2)
            parsed_animation_promptsG[key] = value
        else:  # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
            parsed_animation_promptsG[int(numexpr.evaluate(key))] = value

    sorted_prompts_G = sorted(parsed_animation_promptsG.items(), key=lambda item: int(item[0]))

    for key, value in animation_promptsL.items():
        if check_is_number(key):  # default case 0:(1 + t %5), 30:(5-t%2)
            parsed_animation_promptsL[key] = value
        else:  # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
            parsed_animation_promptsL[int(numexpr.evaluate(key))] = value

    sorted_prompts_L = sorted(parsed_animation_promptsL.items(), key=lambda item: int(item[0]))

    # Setup containers for interpolated prompts
    cur_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])
    nxt_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])

    cur_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])
    nxt_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])

    # simple array for strength values
    weight_series = [np.nan] * max_frames

    # in case there is only one keyed promt, set all prompts to that prompt
    if len(sorted_prompts_G) - 1 == 0:
        for i in range(0, len(cur_prompt_series_G) - 1):
            current_prompt_G = sorted_prompts_G[0][1]
            cur_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)
            nxt_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)

    if len(sorted_prompts_L) - 1 == 0:
        for i in range(0, len(cur_prompt_series_L) - 1):
            current_prompt_L = sorted_prompts_L[0][1]
            cur_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)
            nxt_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)

    # Initialized outside of loop for nan check
    current_key = 0
    next_key = 0

    # For every keyframe prompt except the last
    for i in range(0, len(sorted_prompts_G) - 1):
        # Get current and next keyframe
        current_key = int(sorted_prompts_G[i][0])
        next_key = int(sorted_prompts_G[i + 1][0])

        # Ensure there's no weird ordering issues or duplication in the animation prompts
        # (unlikely because we sort above, and the json parser will strip dupes)
        if current_key >= next_key:
            print(
                f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
            continue

        # Get current and next keyframes' positive and negative prompts (if any)
        current_prompt_G = sorted_prompts_G[i][1]
        next_prompt_G = sorted_prompts_G[i + 1][1]

        # Calculate how much to shift the weight from current to next prompt at each frame.
        weight_step = 1 / (next_key - current_key)

        for f in range(current_key, next_key):
            next_weight = weight_step * (f - current_key)
            current_weight = 1 - next_weight

            # add the appropriate prompts and weights to their respective containers.
            if f < max_frames:
                cur_prompt_series_G[f] = ''
                nxt_prompt_series_G[f] = ''
                weight_series[f] = 0.0

                cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
                nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))

                weight_series[f] += current_weight

        current_key = next_key
        next_key = max_frames
        current_weight = 0.0
        # second loop to catch any nan runoff
        for f in range(current_key, next_key):
            next_weight = weight_step * (f - current_key)

            # add the appropriate prompts and weights to their respective containers.
            cur_prompt_series_G[f] = ''
            nxt_prompt_series_G[f] = ''
            weight_series[f] = current_weight

            cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
            nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))

    # Reset outside of loop for nan check
    current_key = 0
    next_key = 0

    # For every keyframe prompt except the last
    for i in range(0, len(sorted_prompts_L) - 1):
        # Get current and next keyframe
        current_key = int(sorted_prompts_L[i][0])
        next_key = int(sorted_prompts_L[i + 1][0])

        # Ensure there's no weird ordering issues or duplication in the animation prompts
        # (unlikely because we sort above, and the json parser will strip dupes)
        if current_key >= next_key:
            print(
                f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
            continue

        # Get current and next keyframes' positive and negative prompts (if any)
        current_prompt_L = sorted_prompts_L[i][1]
        next_prompt_L = sorted_prompts_L[i + 1][1]

        # Calculate how much to shift the weight from current to next prompt at each frame.
        weight_step = 1 / (next_key - current_key)

        for f in range(current_key, next_key):
            next_weight = weight_step * (f - current_key)
            current_weight = 1 - next_weight

            # add the appropriate prompts and weights to their respective containers.
            if f < max_frames:
                cur_prompt_series_L[f] = ''
                nxt_prompt_series_L[f] = ''
                weight_series[f] = 0.0

                cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
                nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))

                weight_series[f] += current_weight

        current_key = next_key
        next_key = max_frames
        current_weight = 0.0
        # second loop to catch any nan runoff
        for f in range(current_key, next_key):
            next_weight = weight_step * (f - current_key)

            # add the appropriate prompts and weights to their respective containers.
            cur_prompt_series_L[f] = ''
            nxt_prompt_series_L[f] = ''
            weight_series[f] = current_weight

            cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
            nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))

    # Evaluate the current and next prompt's expressions
    for i in range(0, max_frames):
        cur_prompt_series_G[i] = prepare_batch_prompt(cur_prompt_series_G[i], max_frames, i,
                                                             pw_a, pw_b, pw_c, pw_d)
        nxt_prompt_series_G[i] = prepare_batch_prompt(nxt_prompt_series_G[i], max_frames, i,
                                                             pw_a, pw_b, pw_c, pw_d)
        cur_prompt_series_L[i] = prepare_batch_prompt(cur_prompt_series_L[i], max_frames, i,
                                                             pw_a, pw_b, pw_c, pw_d)
        nxt_prompt_series_L[i] = prepare_batch_prompt(nxt_prompt_series_L[i], max_frames, i,
                                                             pw_a, pw_b, pw_c, pw_d)

    current_conds = []
    next_conds = []
    for i in range(0, max_frames):
        current_conds.append(SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height,
                                cur_prompt_series_G[i], cur_prompt_series_L[i]))
        next_conds.append(SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height,
                                nxt_prompt_series_G[i], nxt_prompt_series_L[i]))

    if Is_print == True:
        # Show the to/from prompts with evaluated expressions for transparency.
        for i in range(0, max_frames):
            print("\n", "Max Frames: ", max_frames, "\n", "Current Prompt G: ", cur_prompt_series_G[i],
                  "\n", "Current Prompt L: ", cur_prompt_series_L[i], "\n", "Next Prompt G: ", nxt_prompt_series_G[i],
                  "\n", "Next Prompt L : ", nxt_prompt_series_L[i],  "\n"), "\n", "Current weight: ", weight_series[i]

    return BatchPoolAnimConditioningSDXL(current_conds, next_conds, weight_series, clip)