File size: 8,126 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ComfyUI Node for Ultimate SD Upscale by Coyote-A: https://github.com/Coyote-A/ultimate-upscale-for-automatic1111

import torch
import comfy
from usdu_patch import usdu
from utils import tensor_to_pil, pil_to_tensor
from modules.processing import StableDiffusionProcessing
import modules.shared as shared
from modules.upscaler import UpscalerData

MAX_RESOLUTION = 8192
# The modes available for Ultimate SD Upscale
MODES = {
    "Linear": usdu.USDUMode.LINEAR,
    "Chess": usdu.USDUMode.CHESS,
    "None": usdu.USDUMode.NONE,
}
# The seam fix modes
SEAM_FIX_MODES = {
    "None": usdu.USDUSFMode.NONE,
    "Band Pass": usdu.USDUSFMode.BAND_PASS,
    "Half Tile": usdu.USDUSFMode.HALF_TILE,
    "Half Tile + Intersections": usdu.USDUSFMode.HALF_TILE_PLUS_INTERSECTIONS,
}


def USDU_base_inputs():
    return [
        ("image", ("IMAGE",)),
        # Sampling Params
        ("model", ("MODEL",)),
        ("positive", ("CONDITIONING",)),
        ("negative", ("CONDITIONING",)),
        ("vae", ("VAE",)),
        ("upscale_by", ("FLOAT", {"default": 2, "min": 0.05, "max": 4, "step": 0.05})),
        ("seed", ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})),
        ("steps", ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1})),
        ("cfg", ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0})),
        ("sampler_name", (comfy.samplers.KSampler.SAMPLERS,)),
        ("scheduler", (comfy.samplers.KSampler.SCHEDULERS,)),
        ("denoise", ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01})),
        # Upscale Params
        ("upscale_model", ("UPSCALE_MODEL",)),
        ("mode_type", (list(MODES.keys()),)),
        ("tile_width", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})),
        ("tile_height", ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8})),
        ("mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})),
        ("tile_padding", ("INT", {"default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
        # Seam fix params
        ("seam_fix_mode", (list(SEAM_FIX_MODES.keys()),)),
        ("seam_fix_denoise", ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})),
        ("seam_fix_width", ("INT", {"default": 64, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
        ("seam_fix_mask_blur", ("INT", {"default": 8, "min": 0, "max": 64, "step": 1})),
        ("seam_fix_padding", ("INT", {"default": 16, "min": 0, "max": MAX_RESOLUTION, "step": 8})),
        # Misc
        ("force_uniform_tiles", ("BOOLEAN", {"default": True})),
        ("tiled_decode", ("BOOLEAN", {"default": False})),
    ]


def prepare_inputs(required: list, optional: list = None):
    inputs = {}
    if required:
        inputs["required"] = {}
        for name, type in required:
            inputs["required"][name] = type
    if optional:
        inputs["optional"] = {}
        for name, type in optional:
            inputs["optional"][name] = type
    return inputs


def remove_input(inputs: list, input_name: str):
    for i, (n, _) in enumerate(inputs):
        if n == input_name:
            del inputs[i]
            break


def rename_input(inputs: list, old_name: str, new_name: str):
    for i, (n, t) in enumerate(inputs):
        if n == old_name:
            inputs[i] = (new_name, t)
            break


class UltimateSDUpscale:
    @classmethod
    def INPUT_TYPES(s):
        return prepare_inputs(USDU_base_inputs())

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"
    CATEGORY = "image/upscaling"

    def upscale(self, image, model, positive, negative, vae, upscale_by, seed,
                steps, cfg, sampler_name, scheduler, denoise, upscale_model,
                mode_type, tile_width, tile_height, mask_blur, tile_padding,
                seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
                seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode):
        #
        # Set up A1111 patches
        #

        # Upscaler
        # An object that the script works with
        shared.sd_upscalers[0] = UpscalerData()
        # Where the actual upscaler is stored, will be used when the script upscales using the Upscaler in UpscalerData
        shared.actual_upscaler = upscale_model

        # Set the batch of images
        shared.batch = [tensor_to_pil(image, i) for i in range(len(image))]

        # Processing
        sdprocessing = StableDiffusionProcessing(
            tensor_to_pil(image), model, positive, negative, vae,
            seed, steps, cfg, sampler_name, scheduler, denoise, upscale_by, force_uniform_tiles, tiled_decode
        )

        #
        # Running the script
        #
        script = usdu.Script()
        processed = script.run(p=sdprocessing, _=None, tile_width=tile_width, tile_height=tile_height,
                               mask_blur=mask_blur, padding=tile_padding, seams_fix_width=seam_fix_width,
                               seams_fix_denoise=seam_fix_denoise, seams_fix_padding=seam_fix_padding,
                               upscaler_index=0, save_upscaled_image=False, redraw_mode=MODES[mode_type],
                               save_seams_fix_image=False, seams_fix_mask_blur=seam_fix_mask_blur,
                               seams_fix_type=SEAM_FIX_MODES[seam_fix_mode], target_size_type=2,
                               custom_width=None, custom_height=None, custom_scale=upscale_by)

        # Return the resulting images
        images = [pil_to_tensor(img) for img in shared.batch]
        tensor = torch.cat(images, dim=0)
        return (tensor,)


class UltimateSDUpscaleNoUpscale:
    @classmethod
    def INPUT_TYPES(s):
        required = USDU_base_inputs()
        remove_input(required, "upscale_model")
        remove_input(required, "upscale_by")
        rename_input(required, "image", "upscaled_image")
        return prepare_inputs(required)

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"
    CATEGORY = "image/upscaling"

    def upscale(self, upscaled_image, model, positive, negative, vae, seed,
                steps, cfg, sampler_name, scheduler, denoise,
                mode_type, tile_width, tile_height, mask_blur, tile_padding,
                seam_fix_mode, seam_fix_denoise, seam_fix_mask_blur,
                seam_fix_width, seam_fix_padding, force_uniform_tiles, tiled_decode):

        shared.sd_upscalers[0] = UpscalerData()
        shared.actual_upscaler = None
        shared.batch = [tensor_to_pil(upscaled_image, i) for i in range(len(upscaled_image))]
        sdprocessing = StableDiffusionProcessing(
            tensor_to_pil(upscaled_image), model, positive, negative, vae,
            seed, steps, cfg, sampler_name, scheduler, denoise, 1, force_uniform_tiles, tiled_decode
        )

        script = usdu.Script()
        processed = script.run(p=sdprocessing, _=None, tile_width=tile_width, tile_height=tile_height,
                               mask_blur=mask_blur, padding=tile_padding, seams_fix_width=seam_fix_width,
                               seams_fix_denoise=seam_fix_denoise, seams_fix_padding=seam_fix_padding,
                               upscaler_index=0, save_upscaled_image=False, redraw_mode=MODES[mode_type],
                               save_seams_fix_image=False, seams_fix_mask_blur=seam_fix_mask_blur,
                               seams_fix_type=SEAM_FIX_MODES[seam_fix_mode], target_size_type=2,
                               custom_width=None, custom_height=None, custom_scale=1)

        images = [pil_to_tensor(img) for img in shared.batch]
        tensor = torch.cat(images, dim=0)
        return (tensor,)


# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "UltimateSDUpscale": UltimateSDUpscale,
    "UltimateSDUpscaleNoUpscale": UltimateSDUpscaleNoUpscale
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "UltimateSDUpscale": "Ultimate SD Upscale",
    "UltimateSDUpscaleNoUpscale": "Ultimate SD Upscale (No Upscale)"
}