File size: 7,453 Bytes
0d95f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
import folder_paths
import comfy.clip_model
import comfy.clip_vision
import comfy.ops

# code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0
VISION_CONFIG_DICT = {
    "hidden_size": 1024,
    "image_size": 224,
    "intermediate_size": 4096,
    "num_attention_heads": 16,
    "num_channels": 3,
    "num_hidden_layers": 24,
    "patch_size": 14,
    "projection_dim": 768,
    "hidden_act": "quick_gelu",
}

class MLP(nn.Module):
    def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=comfy.ops):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        self.layernorm = operations.LayerNorm(in_dim)
        self.fc1 = operations.Linear(in_dim, hidden_dim)
        self.fc2 = operations.Linear(hidden_dim, out_dim)
        self.use_residual = use_residual
        self.act_fn = nn.GELU()

    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.fc1(x)
        x = self.act_fn(x)
        x = self.fc2(x)
        if self.use_residual:
            x = x + residual
        return x


class FuseModule(nn.Module):
    def __init__(self, embed_dim, operations):
        super().__init__()
        self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations)
        self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations)
        self.layer_norm = operations.LayerNorm(embed_dim)

    def fuse_fn(self, prompt_embeds, id_embeds):
        stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
        stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
        stacked_id_embeds = self.mlp2(stacked_id_embeds)
        stacked_id_embeds = self.layer_norm(stacked_id_embeds)
        return stacked_id_embeds

    def forward(
        self,
        prompt_embeds,
        id_embeds,
        class_tokens_mask,
    ) -> torch.Tensor:
        # id_embeds shape: [b, max_num_inputs, 1, 2048]
        id_embeds = id_embeds.to(prompt_embeds.dtype)
        num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
        batch_size, max_num_inputs = id_embeds.shape[:2]
        # seq_length: 77
        seq_length = prompt_embeds.shape[1]
        # flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
        flat_id_embeds = id_embeds.view(
            -1, id_embeds.shape[-2], id_embeds.shape[-1]
        )
        # valid_id_mask [b*max_num_inputs]
        valid_id_mask = (
            torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
            < num_inputs[:, None]
        )
        valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]

        prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
        class_tokens_mask = class_tokens_mask.view(-1)
        valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
        # slice out the image token embeddings
        image_token_embeds = prompt_embeds[class_tokens_mask]
        stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
        assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
        prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
        updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
        return updated_prompt_embeds

class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection):
    def __init__(self):
        self.load_device = comfy.model_management.text_encoder_device()
        offload_device = comfy.model_management.text_encoder_offload_device()
        dtype = comfy.model_management.text_encoder_dtype(self.load_device)

        super().__init__(VISION_CONFIG_DICT, dtype, offload_device, comfy.ops.manual_cast)
        self.visual_projection_2 = comfy.ops.manual_cast.Linear(1024, 1280, bias=False)
        self.fuse_module = FuseModule(2048, comfy.ops.manual_cast)

    def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
        b, num_inputs, c, h, w = id_pixel_values.shape
        id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)

        shared_id_embeds = self.vision_model(id_pixel_values)[2]
        id_embeds = self.visual_projection(shared_id_embeds)
        id_embeds_2 = self.visual_projection_2(shared_id_embeds)

        id_embeds = id_embeds.view(b, num_inputs, 1, -1)
        id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)

        id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
        updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)

        return updated_prompt_embeds


class PhotoMakerLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), )}}

    RETURN_TYPES = ("PHOTOMAKER",)
    FUNCTION = "load_photomaker_model"

    CATEGORY = "_for_testing/photomaker"

    def load_photomaker_model(self, photomaker_model_name):
        photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name)
        photomaker_model = PhotoMakerIDEncoder()
        data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
        if "id_encoder" in data:
            data = data["id_encoder"]
        photomaker_model.load_state_dict(data)
        return (photomaker_model,)


class PhotoMakerEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "photomaker": ("PHOTOMAKER",),
                              "image": ("IMAGE",),
                              "clip": ("CLIP", ),
                              "text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}),
                             }}

    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_photomaker"

    CATEGORY = "_for_testing/photomaker"

    def apply_photomaker(self, photomaker, image, clip, text):
        special_token = "photomaker"
        pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
        try:
            index = text.split(" ").index(special_token) + 1
        except ValueError:
            index = -1
        tokens = clip.tokenize(text, return_word_ids=True)
        out_tokens = {}
        for k in tokens:
            out_tokens[k] = []
            for t in tokens[k]:
                f = list(filter(lambda x: x[2] != index, t))
                while len(f) < len(t):
                    f.append(t[-1])
                out_tokens[k].append(f)

        cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)

        if index > 0:
            token_index = index - 1
            num_id_images = 1
            class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)]
            out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
                            class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
        else:
            out = cond

        return ([[out, {"pooled_output": pooled}]], )


NODE_CLASS_MAPPINGS = {
    "PhotoMakerLoader": PhotoMakerLoader,
    "PhotoMakerEncode": PhotoMakerEncode,
}