Spaces:
Running
Running
File size: 28,680 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
import copy
from typing import Union
from einops import rearrange
from torch import Tensor
import torch.nn.functional as F
import torch
import comfy.model_management
import comfy.utils
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from .ad_settings import AnimateDiffSettings
from .context import ContextOptions, ContextOptions, ContextOptionsGroup
from .motion_module_ad import AnimateDiffModel, AnimateDiffFormat, has_mid_block, normalize_ad_state_dict
from .logger import logger
from .utils_motion import ADKeyframe, ADKeyframeGroup, MotionCompatibilityError, get_combined_multival, normalize_min_max
from .motion_lora import MotionLoraInfo, MotionLoraList
from .utils_model import get_motion_lora_path, get_motion_model_path, get_sd_model_type
from .sample_settings import SampleSettings, SeedNoiseGeneration
# some motion_model casts here might fail if model becomes metatensor or is not castable;
# should not really matter if it fails, so ignore raised Exceptions
class ModelPatcherAndInjector(ModelPatcher):
def __init__(self, m: ModelPatcher):
# replicate ModelPatcher.clone() to initialize ModelPatcherAndInjector
super().__init__(m.model, m.load_device, m.offload_device, m.size, m.current_device, weight_inplace_update=m.weight_inplace_update)
self.patches = {}
for k in m.patches:
self.patches[k] = m.patches[k][:]
self.object_patches = m.object_patches.copy()
self.model_options = copy.deepcopy(m.model_options)
self.model_keys = m.model_keys
# injection stuff
self.motion_injection_params: InjectionParams = None
self.sample_settings: SampleSettings = SampleSettings()
self.motion_models: MotionModelGroup = None
def model_patches_to(self, device):
super().model_patches_to(device)
if self.motion_models is not None:
for motion_model in self.motion_models.models:
try:
motion_model.model.to(device)
except Exception:
pass
def patch_model(self, device_to=None):
# first, perform model patching
patched_model = super().patch_model(device_to)
# finally, perform motion model injection
self.inject_model(device_to=device_to)
return patched_model
def unpatch_model(self, device_to=None):
# first, eject motion model from unet
self.eject_model(device_to=device_to)
# finally, do normal model unpatching
return super().unpatch_model(device_to)
def inject_model(self, device_to=None):
if self.motion_models is not None:
for motion_model in self.motion_models.models:
motion_model.model.inject(self)
try:
motion_model.model.to(device_to)
except Exception:
pass
def eject_model(self, device_to=None):
if self.motion_models is not None:
for motion_model in self.motion_models.models:
motion_model.model.eject(self)
try:
motion_model.model.to(device_to)
except Exception:
pass
def clone(self):
cloned = ModelPatcherAndInjector(self)
cloned.motion_models = self.motion_models.clone() if self.motion_models else self.motion_models
cloned.sample_settings = self.sample_settings
cloned.motion_injection_params = self.motion_injection_params.clone() if self.motion_injection_params else self.motion_injection_params
return cloned
class MotionModelPatcher(ModelPatcher):
# Mostly here so that type hints work in IDEs
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model: AnimateDiffModel = self.model
self.timestep_percent_range = (0.0, 1.0)
self.timestep_range: tuple[float, float] = None
self.keyframes: ADKeyframeGroup = ADKeyframeGroup()
self.scale_multival = None
self.effect_multival = None
# temporary variables
self.current_used_steps = 0
self.current_keyframe: ADKeyframe = None
self.current_index = -1
self.current_scale: Union[float, Tensor] = None
self.current_effect: Union[float, Tensor] = None
self.combined_scale: Union[float, Tensor] = None
self.combined_effect: Union[float, Tensor] = None
self.was_within_range = False
def patch_model(self, *args, **kwargs):
# patch as normal, but prepare_weights so that lowvram meta device works properly
patched_model = super().patch_model(*args, **kwargs)
self.prepare_weights()
return patched_model
def prepare_weights(self):
# in case lowvram is active and meta device is used, need to convert weights
# otherwise, will get exceptions thrown related to meta device
# TODO: with new comfy lowvram system, this is unnecessary
state_dict = self.model.state_dict()
for key in state_dict:
weight = comfy.model_management.resolve_lowvram_weight(state_dict[key], self.model, key)
try:
comfy.utils.set_attr(self.model, key, weight)
except Exception:
pass
def pre_run(self, model: ModelPatcherAndInjector):
self.cleanup()
self.model.reset()
# just in case, prepare_weights before every run
self.prepare_weights()
self.model.set_scale(self.scale_multival)
self.model.set_effect(self.effect_multival)
def initialize_timesteps(self, model: BaseModel):
self.timestep_range = (model.model_sampling.percent_to_sigma(self.timestep_percent_range[0]),
model.model_sampling.percent_to_sigma(self.timestep_percent_range[1]))
if self.keyframes is not None:
for keyframe in self.keyframes.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, t: Tensor):
curr_t: float = t[0]
prev_index = self.current_index
# if met guaranteed steps, look for next keyframe in case need to switch
if self.current_keyframe is None or self.current_used_steps >= self.current_keyframe.guarantee_steps:
# if has next index, loop through and see if need to switch
if self.keyframes.has_index(self.current_index+1):
for i in range(self.current_index+1, len(self.keyframes)):
eval_kf = self.keyframes[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_kf.start_t >= curr_t:
self.current_index = i
self.current_keyframe = eval_kf
self.current_used_steps = 0
# keep track of scale and effect multivals, accounting for inherit_missing
if self.current_keyframe.has_scale():
self.current_scale = self.current_keyframe.scale_multival
elif not self.current_keyframe.inherit_missing:
self.current_scale = None
if self.current_keyframe.has_effect():
self.current_effect = self.current_keyframe.effect_multival
elif not self.current_keyframe.inherit_missing:
self.current_effect = None
# if guarantee_steps greater than zero, stop searching for other keyframes
if self.current_keyframe.guarantee_steps > 0:
break
# if eval_kf is outside the percent range, stop looking further
else:
break
# if index changed, apply new combined values
if prev_index != self.current_index:
# combine model's scale and effect with keyframe's scale and effect
self.combined_scale = get_combined_multival(self.scale_multival, self.current_scale)
self.combined_effect = get_combined_multival(self.effect_multival, self.current_effect)
# apply scale and effect
self.model.set_scale(self.combined_scale)
self.model.set_effect(self.combined_effect)
# apply effect - if not within range, set effect to 0, effectively turning model off
if curr_t > self.timestep_range[0] or curr_t < self.timestep_range[1]:
self.model.set_effect(0.0)
self.was_within_range = False
else:
# if was not in range last step, apply effect to toggle AD status
if not self.was_within_range:
self.model.set_effect(self.combined_effect)
self.was_within_range = True
# update steps current keyframe is used
self.current_used_steps += 1
def cleanup(self):
if self.model is not None:
self.model.cleanup()
self.current_used_steps = 0
self.current_keyframe = None
self.current_index = -1
self.current_scale = None
self.current_effect = None
self.combined_scale = None
self.combined_effect = None
self.was_within_range = False
def clone(self):
# normal ModelPatcher clone actions
n = MotionModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
n.object_patches = self.object_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_keys = self.model_keys
# extra cloned params
n.timestep_percent_range = self.timestep_percent_range
n.timestep_range = self.timestep_range
n.keyframes = self.keyframes.clone()
n.scale_multival = self.scale_multival
n.effect_multival = self.effect_multival
return n
class MotionModelGroup:
def __init__(self, init_motion_model: MotionModelPatcher=None):
self.models: list[MotionModelPatcher] = []
if init_motion_model is not None:
self.add(init_motion_model)
def add(self, mm: MotionModelPatcher):
# add to end of list
self.models.append(mm)
def add_to_start(self, mm: MotionModelPatcher):
self.models.insert(0, mm)
def __getitem__(self, index) -> MotionModelPatcher:
return self.models[index]
def is_empty(self) -> bool:
return len(self.models) == 0
def clone(self) -> 'MotionModelGroup':
cloned = MotionModelGroup()
for mm in self.models:
cloned.add(mm)
return cloned
def set_sub_idxs(self, sub_idxs: list[int]):
for motion_model in self.models:
motion_model.model.set_sub_idxs(sub_idxs=sub_idxs)
def set_view_options(self, view_options: ContextOptions):
for motion_model in self.models:
motion_model.model.set_view_options(view_options)
def set_video_length(self, video_length: int, full_length: int):
for motion_model in self.models:
motion_model.model.set_video_length(video_length=video_length, full_length=full_length)
def initialize_timesteps(self, model: BaseModel):
for motion_model in self.models:
motion_model.initialize_timesteps(model)
def pre_run(self, model: ModelPatcherAndInjector):
for motion_model in self.models:
motion_model.pre_run(model)
def prepare_current_keyframe(self, t: Tensor):
for motion_model in self.models:
motion_model.prepare_current_keyframe(t=t)
def get_name_string(self, show_version=False):
identifiers = []
for motion_model in self.models:
id = motion_model.model.mm_info.mm_name
if show_version:
id += f":{motion_model.model.mm_info.mm_version}"
identifiers.append(id)
return ", ".join(identifiers)
def get_vanilla_model_patcher(m: ModelPatcher) -> ModelPatcher:
model = ModelPatcher(m.model, m.load_device, m.offload_device, m.size, m.current_device, weight_inplace_update=m.weight_inplace_update)
model.patches = {}
for k in m.patches:
model.patches[k] = m.patches[k][:]
model.object_patches = m.object_patches.copy()
model.model_options = copy.deepcopy(m.model_options)
model.model_keys = m.model_keys
return model
# adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/utils/convert_lora_safetensor_to_diffusers.py
# Example LoRA keys:
# down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.processor.to_q_lora.down.weight
# down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.processor.to_q_lora.up.weight
#
# Example model keys:
# down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.to_q.weight
#
def load_motion_lora_as_patches(motion_model: MotionModelPatcher, lora: MotionLoraInfo) -> None:
def get_version(has_midblock: bool):
return "v2" if has_midblock else "v1"
lora_path = get_motion_lora_path(lora.name)
logger.info(f"Loading motion LoRA {lora.name}")
state_dict = comfy.utils.load_torch_file(lora_path)
# remove all non-temporal keys (in case model has extra stuff in it)
for key in list(state_dict.keys()):
if "temporal" not in key:
del state_dict[key]
if len(state_dict) == 0:
raise ValueError(f"'{lora.name}' contains no temporal keys; it is not a valid motion LoRA!")
model_has_midblock = motion_model.model.mid_block != None
lora_has_midblock = has_mid_block(state_dict)
logger.info(f"Applying a {get_version(lora_has_midblock)} LoRA ({lora.name}) to a { motion_model.model.mm_info.mm_version} motion model.")
patches = {}
# convert lora state dict to one that matches motion_module keys and tensors
for key in state_dict:
# if motion_module doesn't have a midblock, skip mid_block entries
if not model_has_midblock:
if "mid_block" in key: continue
# only process lora down key (we will process up at the same time as down)
if "up." in key: continue
# get up key version of down key
up_key = key.replace(".down.", ".up.")
# adapt key to match motion_module key format - remove 'processor.', '_lora', 'down.', and 'up.'
model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "")
# motion_module keys have a '0.' after all 'to_out.' weight keys
model_key = model_key.replace("to_out.", "to_out.0.")
weight_down = state_dict[key]
weight_up = state_dict[up_key]
# actual weights obtained by matrix multiplication of up and down weights
# save as a tuple, so that (Motion)ModelPatcher's calculate_weight function detects len==1, applying it correctly
patches[model_key] = (torch.mm(weight_up, weight_down),)
del state_dict
# add patches to motion ModelPatcher
motion_model.add_patches(patches=patches, strength_patch=lora.strength)
def load_motion_module_gen1(model_name: str, model: ModelPatcher, motion_lora: MotionLoraList = None, motion_model_settings: AnimateDiffSettings = None) -> MotionModelPatcher:
model_path = get_motion_model_path(model_name)
logger.info(f"Loading motion module {model_name}")
mm_state_dict = comfy.utils.load_torch_file(model_path, safe_load=True)
# TODO: check for empty state dict?
# get normalized state_dict and motion model info
mm_state_dict, mm_info = normalize_ad_state_dict(mm_state_dict=mm_state_dict, mm_name=model_name)
# check that motion model is compatible with sd model
model_sd_type = get_sd_model_type(model)
if model_sd_type != mm_info.sd_type:
raise MotionCompatibilityError(f"Motion module '{mm_info.mm_name}' is intended for {mm_info.sd_type} models, " \
+ f"but the provided model is type {model_sd_type}.")
# apply motion model settings
mm_state_dict = apply_mm_settings(model_dict=mm_state_dict, mm_settings=motion_model_settings)
# initialize AnimateDiffModelWrapper
ad_wrapper = AnimateDiffModel(mm_state_dict=mm_state_dict, mm_info=mm_info)
ad_wrapper.to(model.model_dtype())
ad_wrapper.to(model.offload_device)
is_animatelcm = mm_info.mm_format==AnimateDiffFormat.ANIMATELCM
load_result = ad_wrapper.load_state_dict(mm_state_dict, strict=not is_animatelcm)
# TODO: report load_result of motion_module loading?
# wrap motion_module into a ModelPatcher, to allow motion lora patches
motion_model = MotionModelPatcher(model=ad_wrapper, load_device=model.load_device, offload_device=model.offload_device)
# load motion_lora, if present
if motion_lora is not None:
for lora in motion_lora.loras:
load_motion_lora_as_patches(motion_model, lora)
return motion_model
def load_motion_module_gen2(model_name: str, motion_model_settings: AnimateDiffSettings = None) -> MotionModelPatcher:
model_path = get_motion_model_path(model_name)
logger.info(f"Loading motion module {model_name} via Gen2")
mm_state_dict = comfy.utils.load_torch_file(model_path, safe_load=True)
# TODO: check for empty state dict?
# get normalized state_dict and motion model info (converts alternate AD models like HotshotXL into AD keys)
mm_state_dict, mm_info = normalize_ad_state_dict(mm_state_dict=mm_state_dict, mm_name=model_name)
# apply motion model settings
mm_state_dict = apply_mm_settings(model_dict=mm_state_dict, mm_settings=motion_model_settings)
# initialize AnimateDiffModelWrapper
ad_wrapper = AnimateDiffModel(mm_state_dict=mm_state_dict, mm_info=mm_info)
ad_wrapper.to(comfy.model_management.unet_dtype())
ad_wrapper.to(comfy.model_management.unet_offload_device())
is_animatelcm = mm_info.mm_format==AnimateDiffFormat.ANIMATELCM
load_result = ad_wrapper.load_state_dict(mm_state_dict, strict=not is_animatelcm)
# TODO: manually check load_results for AnimateLCM models
if is_animatelcm:
pass
# TODO: report load_result of motion_module loading?
# wrap motion_module into a ModelPatcher, to allow motion lora patches
motion_model = MotionModelPatcher(model=ad_wrapper, load_device=comfy.model_management.get_torch_device(),
offload_device=comfy.model_management.unet_offload_device())
return motion_model
def create_fresh_motion_module(motion_model: MotionModelPatcher) -> MotionModelPatcher:
ad_wrapper = AnimateDiffModel(mm_state_dict=motion_model.model.state_dict(), mm_info=motion_model.model.mm_info)
ad_wrapper.to(comfy.model_management.unet_dtype())
ad_wrapper.to(comfy.model_management.unet_offload_device())
ad_wrapper.load_state_dict(motion_model.model.state_dict())
return MotionModelPatcher(model=ad_wrapper, load_device=comfy.model_management.get_torch_device(),
offload_device=comfy.model_management.unet_offload_device())
def validate_model_compatibility_gen2(model: ModelPatcher, motion_model: MotionModelPatcher):
# check that motion model is compatible with sd model
model_sd_type = get_sd_model_type(model)
mm_info = motion_model.model.mm_info
if model_sd_type != mm_info.sd_type:
raise MotionCompatibilityError(f"Motion module '{mm_info.mm_name}' is intended for {mm_info.sd_type} models, " \
+ f"but the provided model is type {model_sd_type}.")
def interpolate_pe_to_length(model_dict: dict[str, Tensor], key: str, new_length: int):
pe_shape = model_dict[key].shape
temp_pe = rearrange(model_dict[key], "(t b) f d -> t b f d", t=1)
temp_pe = F.interpolate(temp_pe, size=(new_length, pe_shape[-1]), mode="bilinear")
temp_pe = rearrange(temp_pe, "t b f d -> (t b) f d", t=1)
model_dict[key] = temp_pe
del temp_pe
def interpolate_pe_to_length_diffs(model_dict: dict[str, Tensor], key: str, new_length: int):
# TODO: fill out and try out
pe_shape = model_dict[key].shape
temp_pe = rearrange(model_dict[key], "(t b) f d -> t b f d", t=1)
temp_pe = F.interpolate(temp_pe, size=(new_length, pe_shape[-1]), mode="bilinear")
temp_pe = rearrange(temp_pe, "t b f d -> (t b) f d", t=1)
model_dict[key] = temp_pe
del temp_pe
def interpolate_pe_to_length_pingpong(model_dict: dict[str, Tensor], key: str, new_length: int):
if model_dict[key].shape[1] < new_length:
temp_pe = model_dict[key]
flipped_temp_pe = torch.flip(temp_pe[:, 1:-1, :], [1])
use_flipped = True
preview_pe = None
while model_dict[key].shape[1] < new_length:
preview_pe = model_dict[key]
model_dict[key] = torch.cat([model_dict[key], flipped_temp_pe if use_flipped else temp_pe], dim=1)
use_flipped = not use_flipped
del temp_pe
del flipped_temp_pe
del preview_pe
model_dict[key] = model_dict[key][:, :new_length]
def freeze_mask_of_pe(model_dict: dict[str, Tensor], key: str):
pe_portion = model_dict[key].shape[2] // 64
first_pe = model_dict[key][:,:1,:]
model_dict[key][:,:,pe_portion:] = first_pe[:,:,pe_portion:]
del first_pe
def freeze_mask_of_attn(model_dict: dict[str, Tensor], key: str):
attn_portion = model_dict[key].shape[0] // 2
model_dict[key][:attn_portion,:attn_portion] *= 1.5
def apply_mm_settings(model_dict: dict[str, Tensor], mm_settings: AnimateDiffSettings) -> dict[str, Tensor]:
if mm_settings is None:
return model_dict
if not mm_settings.has_anything_to_apply():
return model_dict
# first, handle PE Adjustments
for adjust in mm_settings.adjust_pe.adjusts:
if adjust.has_anything_to_apply():
already_printed = False
for key in model_dict:
if "attention_blocks" in key and "pos_encoder" in key:
# apply simple motion pe stretch, if needed
if adjust.has_motion_pe_stretch():
original_length = model_dict[key].shape[1]
new_pe_length = original_length + adjust.motion_pe_stretch
interpolate_pe_to_length(model_dict, key, new_length=new_pe_length)
if adjust.print_adjustment and not already_printed:
logger.info(f"[Adjust PE]: PE Stretch from {original_length} to {new_pe_length}.")
# apply pe_idx_offset, if needed
if adjust.has_initial_pe_idx_offset():
original_length = model_dict[key].shape[1]
model_dict[key] = model_dict[key][:, adjust.initial_pe_idx_offset:]
if adjust.print_adjustment and not already_printed:
logger.info(f"[Adjust PE]: Offsetting PEs by {adjust.initial_pe_idx_offset}; PE length to shortens from {original_length} to {model_dict[key].shape[1]}.")
# apply has_cap_initial_pe_length, if needed
if adjust.has_cap_initial_pe_length():
original_length = model_dict[key].shape[1]
model_dict[key] = model_dict[key][:, :adjust.cap_initial_pe_length]
if adjust.print_adjustment and not already_printed:
logger.info(f"[Adjust PE]: Capping PEs (initial) from {original_length} to {model_dict[key].shape[1]}.")
# apply interpolate_pe_to_length, if needed
if adjust.has_interpolate_pe_to_length():
original_length = model_dict[key].shape[1]
interpolate_pe_to_length(model_dict, key, new_length=adjust.interpolate_pe_to_length)
if adjust.print_adjustment and not already_printed:
logger.info(f"[Adjust PE]: Interpolating PE length from {original_length} to {model_dict[key].shape[1]}.")
# apply final_pe_idx_offset, if needed
if adjust.has_final_pe_idx_offset():
original_length = model_dict[key].shape[1]
model_dict[key] = model_dict[key][:, adjust.final_pe_idx_offset:]
if adjust.print_adjustment and not already_printed:
logger.info(f"[Adjust PE]: Capping PEs (final) from {original_length} to {model_dict[key].shape[1]}.")
already_printed = True
# finally, apply any weight changes
for key in model_dict:
if "attention_blocks" in key:
if "pos_encoder" in key and mm_settings.adjust_pe.has_anything_to_apply():
# apply pe_strength, if needed
if mm_settings.has_pe_strength():
model_dict[key] *= mm_settings.pe_strength
else:
# apply attn_strenth, if needed
if mm_settings.has_attn_strength():
model_dict[key] *= mm_settings.attn_strength
# apply specific attn_strengths, if needed
if mm_settings.has_any_attn_sub_strength():
if "to_q" in key and mm_settings.has_attn_q_strength():
model_dict[key] *= mm_settings.attn_q_strength
elif "to_k" in key and mm_settings.has_attn_k_strength():
model_dict[key] *= mm_settings.attn_k_strength
elif "to_v" in key and mm_settings.has_attn_v_strength():
model_dict[key] *= mm_settings.attn_v_strength
elif "to_out" in key:
if key.strip().endswith("weight") and mm_settings.has_attn_out_weight_strength():
model_dict[key] *= mm_settings.attn_out_weight_strength
elif key.strip().endswith("bias") and mm_settings.has_attn_out_bias_strength():
model_dict[key] *= mm_settings.attn_out_bias_strength
# apply other strength, if needed
elif mm_settings.has_other_strength():
model_dict[key] *= mm_settings.other_strength
return model_dict
class InjectionParams:
def __init__(self, unlimited_area_hack: bool=False, apply_mm_groupnorm_hack: bool=True, model_name: str="",
apply_v2_properly: bool=True) -> None:
self.full_length = None
self.unlimited_area_hack = unlimited_area_hack
self.apply_mm_groupnorm_hack = apply_mm_groupnorm_hack
self.model_name = model_name
self.apply_v2_properly = apply_v2_properly
self.context_options: ContextOptionsGroup = ContextOptionsGroup.default()
self.motion_model_settings = AnimateDiffSettings() # Gen1
self.sub_idxs = None # value should NOT be included in clone, so it will auto reset
def set_noise_extra_args(self, noise_extra_args: dict):
noise_extra_args["context_options"] = self.context_options.clone()
def set_context(self, context_options: ContextOptionsGroup):
self.context_options = context_options.clone() if context_options else ContextOptionsGroup.default()
def is_using_sliding_context(self) -> bool:
return self.context_options.context_length is not None
def set_motion_model_settings(self, motion_model_settings: AnimateDiffSettings): # Gen1
if motion_model_settings is None:
self.motion_model_settings = AnimateDiffSettings()
else:
self.motion_model_settings = motion_model_settings
def reset_context(self):
self.context_options = ContextOptionsGroup.default()
def clone(self) -> 'InjectionParams':
new_params = InjectionParams(
self.unlimited_area_hack, self.apply_mm_groupnorm_hack,
self.model_name, apply_v2_properly=self.apply_v2_properly,
)
new_params.full_length = self.full_length
new_params.set_context(self.context_options)
new_params.set_motion_model_settings(self.motion_model_settings) # Gen1
return new_params
|