File size: 11,156 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import os
import shutil
import subprocess
from typing import Dict, List

import numpy as np
import torch
from PIL import Image
from PIL.PngImagePlugin import PngInfo

import folder_paths
from comfy.model_patcher import ModelPatcher

from .context import ContextOptionsGroup, ContextOptions, ContextSchedules
from .logger import logger
from .utils_model import Folders, BetaSchedules, get_available_motion_models
from .model_injection import ModelPatcherAndInjector, InjectionParams, MotionModelGroup, load_motion_module_gen1


class AnimateDiffLoader_Deprecated:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "latents": ("LATENT",),
                "model_name": (get_available_motion_models(),),
                "unlimited_area_hack": ("BOOLEAN", {"default": False},),
                "beta_schedule": (BetaSchedules.get_alias_list_with_first_element(BetaSchedules.SQRT_LINEAR),),
            },
        }

    RETURN_TYPES = ("MODEL", "LATENT")
    CATEGORY = ""
    FUNCTION = "load_mm_and_inject_params"

    def load_mm_and_inject_params(
        self,
        model: ModelPatcher,
        latents: Dict[str, torch.Tensor],
        model_name: str, unlimited_area_hack: bool, beta_schedule: str,
    ):
        # load motion module
        motion_model = load_motion_module_gen1(model_name, model)
        # get total frames
        init_frames_len = len(latents["samples"])  # deprecated - no longer used for anything lol
        # set injection params
        params = InjectionParams(
                unlimited_area_hack=unlimited_area_hack,
                apply_mm_groupnorm_hack=True,
                model_name=model_name,
                apply_v2_properly=False,
        )
        # inject for use in sampling code
        model = ModelPatcherAndInjector(model)
        model.motion_models = MotionModelGroup(motion_model)
        model.motion_injection_params = params

        # save model sampling from BetaSchedule as object patch
        # if autoselect, get suggested beta_schedule from motion model
        if beta_schedule == BetaSchedules.AUTOSELECT and not model.motion_models.is_empty():
            beta_schedule = model.motion_models[0].model.get_best_beta_schedule(log=True)
        new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
        if new_model_sampling is not None:
            model.add_object_patch("model_sampling", new_model_sampling)

        del motion_model
        return (model, latents)


class AnimateDiffLoaderAdvanced_Deprecated:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": ("MODEL",),
                "latents": ("LATENT",),
                "model_name": (get_available_motion_models(),),
                "unlimited_area_hack": ("BOOLEAN", {"default": False},),
                "context_length": ("INT", {"default": 16, "min": 0, "max": 1000}),
                "context_stride": ("INT", {"default": 1, "min": 1, "max": 1000}),
                "context_overlap": ("INT", {"default": 4, "min": 0, "max": 1000}),
                "context_schedule": (ContextSchedules.LEGACY_UNIFORM_SCHEDULE_LIST,),
                "closed_loop": ("BOOLEAN", {"default": False},),
                "beta_schedule": (BetaSchedules.get_alias_list_with_first_element(BetaSchedules.SQRT_LINEAR),),
            },
        }

    RETURN_TYPES = ("MODEL", "LATENT")
    CATEGORY = ""
    FUNCTION = "load_mm_and_inject_params"

    def load_mm_and_inject_params(self,
            model: ModelPatcher,
            latents: Dict[str, torch.Tensor],
            model_name: str, unlimited_area_hack: bool,
            context_length: int, context_stride: int, context_overlap: int, context_schedule: str, closed_loop: bool,
            beta_schedule: str,
        ):
        # load motion module
        motion_model = load_motion_module_gen1(model_name, model)
        # get total frames
        init_frames_len = len(latents["samples"])  # deprecated - no longer used for anything lol
        # set injection params
        params = InjectionParams(
                unlimited_area_hack=unlimited_area_hack,
                apply_mm_groupnorm_hack=True,
                model_name=model_name,
                apply_v2_properly=False,
        )
        context_group = ContextOptionsGroup()
        context_group.add(
            ContextOptions(
                context_length=context_length,
                context_stride=context_stride,
                context_overlap=context_overlap,
                context_schedule=context_schedule,
                closed_loop=closed_loop,
                )
            )
        # set context settings
        params.set_context(context_options=context_group)
        # inject for use in sampling code
        model = ModelPatcherAndInjector(model)
        model.motion_models = MotionModelGroup(motion_model)
        model.motion_injection_params = params

        # save model sampling from BetaSchedule as object patch
        # if autoselect, get suggested beta_schedule from motion model
        if beta_schedule == BetaSchedules.AUTOSELECT and not model.motion_models.is_empty():
            beta_schedule = model.motion_models[0].model.get_best_beta_schedule(log=True)
        new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
        if new_model_sampling is not None:
            model.add_object_patch("model_sampling", new_model_sampling)

        del motion_model
        return (model, latents)
    

class AnimateDiffCombine_Deprecated:
    ffmpeg_warning_already_shown = False
    @classmethod
    def INPUT_TYPES(s):
        ffmpeg_path = shutil.which("ffmpeg")
        #Hide ffmpeg formats if ffmpeg isn't available
        if ffmpeg_path is not None:
            ffmpeg_formats = ["video/"+x[:-5] for x in folder_paths.get_filename_list(Folders.VIDEO_FORMATS)]
        else:
            ffmpeg_formats = []
            if not s.ffmpeg_warning_already_shown:
                # Deprecated node are now hidden, so no need to show warning unless node is used.
                # logger.warning("This warning can be ignored, you should not be using the deprecated AnimateDiff Combine node anyway. If you are, use Video Combine from ComfyUI-VideoHelperSuite instead. ffmpeg could not be found. Outputs that require it have been disabled")
                s.ffmpeg_warning_already_shown = True
        return {
            "required": {
                "images": ("IMAGE",),
                "frame_rate": (
                    "INT",
                    {"default": 8, "min": 1, "max": 24, "step": 1},
                ),
                "loop_count": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
                "filename_prefix": ("STRING", {"default": "AnimateDiff"}),
                "format": (["image/gif", "image/webp"] + ffmpeg_formats,),
                "pingpong": ("BOOLEAN", {"default": False}),
                "save_image": ("BOOLEAN", {"default": True}),
            },
            "hidden": {
                "prompt": "PROMPT",
                "extra_pnginfo": "EXTRA_PNGINFO",
            },
        }

    RETURN_TYPES = ("GIF",)
    OUTPUT_NODE = True
    CATEGORY = ""
    FUNCTION = "generate_gif"

    def generate_gif(
        self,
        images,
        frame_rate: int,
        loop_count: int,
        filename_prefix="AnimateDiff",
        format="image/gif",
        pingpong=False,
        save_image=True,
        prompt=None,
        extra_pnginfo=None,
    ):
        logger.warning("Do not use AnimateDiff Combine node, it is deprecated. Use Video Combine node from ComfyUI-VideoHelperSuite instead. Video nodes from VideoHelperSuite are actively maintained, more feature-rich, and also automatically attempts to get ffmpeg.")
        # convert images to numpy
        frames: List[Image.Image] = []
        for image in images:
            img = 255.0 * image.cpu().numpy()
            img = Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
            frames.append(img)
            
        # get output information
        output_dir = (
            folder_paths.get_output_directory()
            if save_image
            else folder_paths.get_temp_directory()
        )
        (
            full_output_folder,
            filename,
            counter,
            subfolder,
            _,
        ) = folder_paths.get_save_image_path(filename_prefix, output_dir)

        metadata = PngInfo()
        if prompt is not None:
            metadata.add_text("prompt", json.dumps(prompt))
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata.add_text(x, json.dumps(extra_pnginfo[x]))

        # save first frame as png to keep metadata
        file = f"{filename}_{counter:05}_.png"
        file_path = os.path.join(full_output_folder, file)
        frames[0].save(
            file_path,
            pnginfo=metadata,
            compress_level=4,
        )
        if pingpong:
            frames = frames + frames[-2:0:-1]
        
        format_type, format_ext = format.split("/")
        file = f"{filename}_{counter:05}_.{format_ext}"
        file_path = os.path.join(full_output_folder, file)
        if format_type == "image":
            # Use pillow directly to save an animated image
            frames[0].save(
                file_path,
                format=format_ext.upper(),
                save_all=True,
                append_images=frames[1:],
                duration=round(1000 / frame_rate),
                loop=loop_count,
                compress_level=4,
            )
        else:
            # Use ffmpeg to save a video
            ffmpeg_path = shutil.which("ffmpeg")
            if ffmpeg_path is None:
                #Should never be reachable
                raise ProcessLookupError("Could not find ffmpeg")

            video_format_path = folder_paths.get_full_path("video_formats", format_ext + ".json")
            with open(video_format_path, 'r') as stream:
                video_format = json.load(stream)
            file = f"{filename}_{counter:05}_.{video_format['extension']}"
            file_path = os.path.join(full_output_folder, file)
            dimensions = f"{frames[0].width}x{frames[0].height}"
            args = [ffmpeg_path, "-v", "error", "-f", "rawvideo", "-pix_fmt", "rgb24",
                    "-s", dimensions, "-r", str(frame_rate), "-i", "-"] \
                    + video_format['main_pass'] + [file_path]

            env=os.environ.copy()
            if  "environment" in video_format:
                env.update(video_format["environment"])
            with subprocess.Popen(args, stdin=subprocess.PIPE, env=env) as proc:
                for frame in frames:
                    proc.stdin.write(frame.tobytes())

        previews = [
            {
                "filename": file,
                "subfolder": subfolder,
                "type": "output" if save_image else "temp",
                "format": format,
            }
        ]
        return {"ui": {"gifs": previews}}