Spaces:
Running
Running
File size: 16,066 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import hashlib
from pathlib import Path
from typing import Callable, Union
from collections.abc import Iterable
from time import time
import copy
import torch
import numpy as np
import folder_paths
from comfy.model_base import SD21UNCLIP, SDXL, BaseModel, SDXLRefiner, SVD_img2vid, model_sampling, ModelType
from comfy.model_management import xformers_enabled
from comfy.model_patcher import ModelPatcher
import comfy.model_sampling
import comfy_extras.nodes_model_advanced
BIGMIN = -(2**53-1)
BIGMAX = (2**53-1)
class ModelSamplingConfig:
def __init__(self, beta_schedule: str, linear_start: float=None, linear_end: float=None):
self.sampling_settings = {"beta_schedule": beta_schedule}
if linear_start is not None:
self.sampling_settings["linear_start"] = linear_start
if linear_end is not None:
self.sampling_settings["linear_end"] = linear_end
self.beta_schedule = beta_schedule # keeping this for backwards compatibility
class ModelSamplingType:
EPS = "eps"
V_PREDICTION = "v_prediction"
LCM = "lcm"
_NON_LCM_LIST = [EPS, V_PREDICTION]
_FULL_LIST = [EPS, V_PREDICTION, LCM]
MAP = {
EPS: ModelType.EPS,
V_PREDICTION: ModelType.V_PREDICTION,
LCM: comfy_extras.nodes_model_advanced.LCM,
}
@classmethod
def from_alias(cls, alias: str):
return cls.MAP[alias]
def factory_model_sampling_discrete_distilled(original_timesteps=50):
class ModelSamplingDiscreteDistilledEvolved(comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled):
def __init__(self, *args, **kwargs):
self.original_timesteps = original_timesteps # normal LCM has 50
super().__init__(*args, **kwargs)
return ModelSamplingDiscreteDistilledEvolved
# based on code in comfy_extras/nodes_model_advanced.py
def evolved_model_sampling(model_config: ModelSamplingConfig, model_type: ModelType, alias: str, original_timesteps: int=None):
# if LCM, need to handle manually
if BetaSchedules.is_lcm(alias) or original_timesteps is not None:
sampling_type = comfy_extras.nodes_model_advanced.LCM
if original_timesteps is not None:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=original_timesteps)
elif alias == BetaSchedules.LCM_100:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=100)
elif alias == BetaSchedules.LCM_25:
sampling_base = factory_model_sampling_discrete_distilled(original_timesteps=25)
else:
sampling_base = comfy_extras.nodes_model_advanced.ModelSamplingDiscreteDistilled
class ModelSamplingAdvancedEvolved(sampling_base, sampling_type):
pass
# NOTE: if I want to support zsnr, this is where I would add that code
return ModelSamplingAdvancedEvolved(model_config)
# otherwise, use vanilla model_sampling function
return model_sampling(model_config, model_type)
class BetaSchedules:
AUTOSELECT = "autoselect"
SQRT_LINEAR = "sqrt_linear (AnimateDiff)"
LINEAR_ADXL = "linear (AnimateDiff-SDXL)"
LINEAR = "linear (HotshotXL/default)"
AVG_LINEAR_SQRT_LINEAR = "avg(sqrt_linear,linear)"
LCM_AVG_LINEAR_SQRT_LINEAR = "lcm avg(sqrt_linear,linear)"
LCM = "lcm"
LCM_100 = "lcm[100_ots]"
LCM_25 = "lcm[25_ots]"
LCM_SQRT_LINEAR = "lcm >> sqrt_linear"
USE_EXISTING = "use existing"
SQRT = "sqrt"
COSINE = "cosine"
SQUAREDCOS_CAP_V2 = "squaredcos_cap_v2"
RAW_LINEAR = "linear"
RAW_SQRT_LINEAR = "sqrt_linear"
RAW_BETA_SCHEDULE_LIST = [RAW_LINEAR, RAW_SQRT_LINEAR, SQRT, COSINE, SQUAREDCOS_CAP_V2]
ALIAS_LCM_LIST = [LCM, LCM_100, LCM_25, LCM_SQRT_LINEAR]
ALIAS_ACTIVE_LIST = [SQRT_LINEAR, LINEAR_ADXL, LINEAR, AVG_LINEAR_SQRT_LINEAR, LCM_AVG_LINEAR_SQRT_LINEAR, LCM, LCM_100, LCM_SQRT_LINEAR, # LCM_25 is purposely omitted
SQRT, COSINE, SQUAREDCOS_CAP_V2]
ALIAS_LIST = [AUTOSELECT, USE_EXISTING] + ALIAS_ACTIVE_LIST
ALIAS_MAP = {
SQRT_LINEAR: "sqrt_linear",
LINEAR_ADXL: "linear", # also linear, but has different linear_end (0.020)
LINEAR: "linear",
LCM_100: "linear", # distilled, 100 original timesteps
LCM_25: "linear", # distilled, 25 original timesteps
LCM: "linear", # distilled
LCM_SQRT_LINEAR: "sqrt_linear", # distilled, sqrt_linear
SQRT: "sqrt",
COSINE: "cosine",
SQUAREDCOS_CAP_V2: "squaredcos_cap_v2",
RAW_LINEAR: "linear",
RAW_SQRT_LINEAR: "sqrt_linear"
}
@classmethod
def is_lcm(cls, alias: str):
return alias in cls.ALIAS_LCM_LIST
@classmethod
def to_name(cls, alias: str):
return cls.ALIAS_MAP[alias]
@classmethod
def to_config(cls, alias: str) -> ModelSamplingConfig:
linear_start = None
linear_end = None
if alias == cls.LINEAR_ADXL:
# uses linear_end=0.020
linear_end = 0.020
return ModelSamplingConfig(cls.to_name(alias), linear_start=linear_start, linear_end=linear_end)
@classmethod
def _to_model_sampling(cls, alias: str, model_type: ModelType, config_override: ModelSamplingConfig=None, original_timesteps: int=None):
if alias == cls.USE_EXISTING:
return None
elif config_override != None:
return evolved_model_sampling(config_override, model_type=model_type, alias=alias, original_timesteps=original_timesteps)
elif alias == cls.AVG_LINEAR_SQRT_LINEAR:
ms_linear = evolved_model_sampling(cls.to_config(cls.LINEAR), model_type=model_type, alias=cls.LINEAR)
ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.SQRT_LINEAR), model_type=model_type, alias=cls.SQRT_LINEAR)
avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
ms_linear.set_sigmas(avg_sigmas)
return ms_linear
elif alias == cls.LCM_AVG_LINEAR_SQRT_LINEAR:
ms_linear = evolved_model_sampling(cls.to_config(cls.LCM), model_type=model_type, alias=cls.LCM)
ms_sqrt_linear = evolved_model_sampling(cls.to_config(cls.LCM_SQRT_LINEAR), model_type=model_type, alias=cls.LCM_SQRT_LINEAR)
avg_sigmas = (ms_linear.sigmas + ms_sqrt_linear.sigmas) / 2
ms_linear.set_sigmas(avg_sigmas)
return ms_linear
# average out the sigmas
ms_obj = evolved_model_sampling(cls.to_config(alias), model_type=model_type, alias=alias, original_timesteps=original_timesteps)
return ms_obj
@classmethod
def to_model_sampling(cls, alias: str, model: ModelPatcher):
return cls._to_model_sampling(alias=alias, model_type=model.model.model_type)
@staticmethod
def get_alias_list_with_first_element(first_element: str):
new_list = BetaSchedules.ALIAS_LIST.copy()
element_index = new_list.index(first_element)
new_list[0], new_list[element_index] = new_list[element_index], new_list[0]
return new_list
class SigmaSchedule:
def __init__(self, model_sampling: comfy.model_sampling.ModelSamplingDiscrete, model_type: ModelType):
self.model_sampling = model_sampling
#self.config = config
self.model_type = model_type
self.original_timesteps = getattr(self.model_sampling, "original_timesteps", None)
def is_lcm(self):
return self.original_timesteps is not None
def total_sigmas(self):
return len(self.model_sampling.sigmas)
def clone(self) -> 'SigmaSchedule':
new_model_sampling = copy.deepcopy(self.model_sampling)
#new_config = copy.deepcopy(self.config)
return SigmaSchedule(model_sampling=new_model_sampling, model_type=self.model_type)
# def clone(self):
# pass
@staticmethod
def apply_zsnr(new_model_sampling: comfy.model_sampling.ModelSamplingDiscrete):
new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))
# def get_lcmified(self, original_timesteps=50, zsnr=False) -> 'SigmaSchedule':
# new_model_sampling = evolved_model_sampling(model_config=self.config, model_type=self.model_type, alias=None, original_timesteps=original_timesteps)
# if zsnr:
# new_model_sampling.set_sigmas(comfy_extras.nodes_model_advanced.rescale_zero_terminal_snr_sigmas(new_model_sampling.sigmas))
# return SigmaSchedule(model_sampling=new_model_sampling, config=self.config, model_type=self.model_type, is_lcm=True)
class InterpolationMethod:
LINEAR = "linear"
EASE_IN = "ease_in"
EASE_OUT = "ease_out"
EASE_IN_OUT = "ease_in_out"
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
@classmethod
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
diff = num_to - num_from
if method == cls.LINEAR:
weights = torch.linspace(num_from, num_to, length)
elif method == cls.EASE_IN:
index = torch.linspace(0, 1, length)
weights = diff * np.power(index, 2) + num_from
elif method == cls.EASE_OUT:
index = torch.linspace(0, 1, length)
weights = diff * (1 - np.power(1 - index, 2)) + num_from
elif method == cls.EASE_IN_OUT:
index = torch.linspace(0, 1, length)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
else:
raise ValueError(f"Unrecognized interpolation method '{method}'.")
if reverse:
weights = weights.flip(dims=(0,))
return weights
class Folders:
ANIMATEDIFF_MODELS = "animatediff_models"
MOTION_LORA = "animatediff_motion_lora"
VIDEO_FORMATS = "animatediff_video_formats"
def add_extension_to_folder_path(folder_name: str, extensions: Union[str, list[str]]):
if folder_name in folder_paths.folder_names_and_paths:
if isinstance(extensions, str):
folder_paths.folder_names_and_paths[folder_name][1].add(extensions)
elif isinstance(extensions, Iterable):
for ext in extensions:
folder_paths.folder_names_and_paths[folder_name][1].add(ext)
def try_mkdir(full_path: str):
try:
Path(full_path).mkdir()
except Exception:
pass
# register motion models folder(s)
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(__file__).parent.parent / "models"))
folder_paths.add_model_folder_path(Folders.ANIMATEDIFF_MODELS, str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))
add_extension_to_folder_path(Folders.ANIMATEDIFF_MODELS, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.ANIMATEDIFF_MODELS))
# register motion LoRA folder(s)
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(__file__).parent.parent / "motion_lora"))
folder_paths.add_model_folder_path(Folders.MOTION_LORA, str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))
add_extension_to_folder_path(Folders.MOTION_LORA, folder_paths.supported_pt_extensions)
try_mkdir(str(Path(folder_paths.models_dir) / Folders.MOTION_LORA))
# register video_formats folder
folder_paths.add_model_folder_path(Folders.VIDEO_FORMATS, str(Path(__file__).parent.parent / "video_formats"))
add_extension_to_folder_path(Folders.VIDEO_FORMATS, ".json")
def get_available_motion_models():
return folder_paths.get_filename_list(Folders.ANIMATEDIFF_MODELS)
def get_motion_model_path(model_name: str):
return folder_paths.get_full_path(Folders.ANIMATEDIFF_MODELS, model_name)
def get_available_motion_loras():
return folder_paths.get_filename_list(Folders.MOTION_LORA)
def get_motion_lora_path(lora_name: str):
return folder_paths.get_full_path(Folders.MOTION_LORA, lora_name)
# modified from https://stackoverflow.com/questions/22058048/hashing-a-file-in-python
def calculate_file_hash(filename: str, hash_every_n: int = 50):
h = hashlib.sha256()
b = bytearray(1024*1024)
mv = memoryview(b)
with open(filename, 'rb', buffering=0) as f:
i = 0
# don't hash entire file, only portions of it
while n := f.readinto(mv):
if i%hash_every_n == 0:
h.update(mv[:n])
i += 1
return h.hexdigest()
def calculate_model_hash(model: ModelPatcher):
unet = model.model.diff
t = unet.input_blocks[1]
m = hashlib.sha256()
for buf in t.buffers():
m.update(buf.cpu().numpy().view(np.uint8))
return m.hexdigest()
class ModelTypeSD:
SD1_5 = "SD1.5"
SD2_1 = "SD2.1"
SDXL = "SDXL"
SDXL_REFINER = "SDXL_Refiner"
SVD = "SVD"
def get_sd_model_type(model: ModelPatcher) -> str:
if model is None:
return None
elif type(model.model) == BaseModel:
return ModelTypeSD.SD1_5
elif type(model.model) == SDXL:
return ModelTypeSD.SDXL
elif type(model.model) == SD21UNCLIP:
return ModelTypeSD.SD2_1
elif type(model.model) == SDXLRefiner:
return ModelTypeSD.SDXL_REFINER
elif type(model.model) == SVD_img2vid:
return ModelTypeSD.SVD
else:
return str(type(model.model).__name__)
def is_checkpoint_sd1_5(model: ModelPatcher):
return False if model is None else type(model.model) == BaseModel
def is_checkpoint_sdxl(model: ModelPatcher):
return False if model is None else type(model.model) == SDXL
def raise_if_not_checkpoint_sd1_5(model: ModelPatcher):
if not is_checkpoint_sd1_5(model):
raise ValueError(f"For AnimateDiff, SD Checkpoint (model) is expected to be SD1.5-based (BaseModel), but was: {type(model.model).__name__}")
# TODO: remove this filth when xformers bug gets fixed in future xformers version
def wrap_function_to_inject_xformers_bug_info(function_to_wrap: Callable) -> Callable:
if not xformers_enabled:
return function_to_wrap
else:
def wrapped_function(*args, **kwargs):
try:
return function_to_wrap(*args, **kwargs)
except RuntimeError as e:
if str(e).startswith("CUDA error: invalid configuration argument"):
raise RuntimeError(f"An xformers bug was encountered in AnimateDiff - this is unexpected, \
report this to Kosinkadink/ComfyUI-AnimateDiff-Evolved repo as an issue, \
and a workaround for now is to run ComfyUI with the --disable-xformers argument.")
raise
return wrapped_function
class Timer(object):
__slots__ = ("start_time", "end_time")
def __init__(self) -> None:
self.start_time = 0.0
self.end_time = 0.0
def start(self) -> None:
self.start_time = time()
def update(self) -> None:
self.start()
def stop(self) -> float:
self.end_time = time()
return self.get_time_diff()
def get_time_diff(self) -> float:
return self.end_time - self.start_time
def get_time_current(self) -> float:
return time() - self.start_time
# TODO: possibly add configuration file in future when needed?
# # Load config settings
# ADE_DIR = Path(__file__).parent.parent
# ADE_CONFIG_FILE = ADE_DIR / "ade_config.json"
# class ADE_Settings:
# USE_XFORMERS_IN_VERSATILE_ATTENTION = "use_xformers_in_VersatileAttention"
# # Create ADE config if not present
# ABS_CONFIG = {
# ADE_Settings.USE_XFORMERS_IN_VERSATILE_ATTENTION: True
# }
# if not ADE_CONFIG_FILE.exists():
# with ADE_CONFIG_FILE.open("w") as f:
# json.dumps(ABS_CONFIG, indent=4)
# # otherwise, load it and use values
# else:
# loaded_values: dict = None
# with ADE_CONFIG_FILE.open("r") as f:
# loaded_values = json.load(f)
# if loaded_values is not None:
# for key, value in loaded_values.items():
# if key in ABS_CONFIG:
# ABS_CONFIG[key] = value
|