Spaces:
Running
Running
File size: 21,339 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
#These nodes were made using code from the Deforum extension for A1111 webui
#You can find the project here: https://github.com/deforum-art/sd-webui-deforum
import numexpr
import torch
import numpy as np
import pandas as pd
import re
import json
#functions used by PromptSchedule nodes
#Addweighted function from Comfyui
def addWeighted(conditioning_to, conditioning_from, conditioning_to_strength):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
max_size = max(t1.shape[1], cond_from.shape[1])
t0 = pad_with_zeros(cond_from, max_size)
t1 = pad_with_zeros(t1, max_size)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
t_to = conditioning_to[i][1].copy()
if pooled_output_from is not None and pooled_output_to is not None:
# Pad pooled outputs if available
pooled_output_to = pad_with_zeros(pooled_output_to, max_size)
pooled_output_from = pad_with_zeros(pooled_output_from, max_size)
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
elif pooled_output_from is not None:
t_to["pooled_output"] = pooled_output_from
n = [tw, t_to]
out.append(n)
return out
def pad_with_zeros(tensor, target_length):
current_length = tensor.shape[1]
if current_length < target_length:
padding = torch.zeros(tensor.shape[0], target_length - current_length, tensor.shape[2]).to(tensor.device)
tensor = torch.cat([tensor, padding], dim=1)
return tensor
def reverseConcatenation(final_conditioning, final_pooled_output, max_frames):
# Split the final_conditioning and final_pooled_output tensors into their original components
cond_out = torch.split(final_conditioning, max_frames)
pooled_out = torch.split(final_pooled_output, max_frames)
return cond_out, pooled_out
def check_is_number(value):
float_pattern = r'^(?=.)([+-]?([0-9]*)(\.([0-9]+))?)$'
return re.match(float_pattern, value)
def split_weighted_subprompts(text, frame=0, pre_text='', app_text=''):
pre_text = str(pre_text)
app_text = str(app_text)
if "--neg" in pre_text:
pre_pos, pre_neg = pre_text.split("--neg")
else:
pre_pos, pre_neg = pre_text, ""
if "--neg" in app_text:
app_pos, app_neg = app_text.split("--neg")
else:
app_pos, app_neg = app_text, ""
# Check if the text is a string; if not, convert it to a string
if not isinstance(text, str):
text = str(text)
math_parser = re.compile("(?P<weight>(`[\S\s]*?`))", re.VERBOSE)
parsed_prompt = re.sub(math_parser, lambda m: str(parse_weight(m, frame)), text)
negative_prompts = ""
positive_prompts = ""
# Check if the last character is '0' and remove it
prompt_split = parsed_prompt.split("--neg")
if len(prompt_split) > 1:
positive_prompts, negative_prompts = prompt_split[0], prompt_split[1]
else:
positive_prompts = prompt_split[0]
pos = {}
neg = {}
pos[frame] = (str(pre_pos) + " " + str(positive_prompts) + " " + str(app_pos))
neg[frame] = (str(pre_neg) + " " + str(negative_prompts) + " " + str(app_neg))
if pos[frame].endswith('0'):
pos[frame] = pos[frame][:-1]
if neg[frame].endswith('0'):
neg[frame] = neg[frame][:-1]
return pos, neg
def parse_weight(match, frame=0, max_frames=0) -> float: #calculate weight steps for in-betweens
w_raw = match.group("weight")
max_f = max_frames # this line has to be left intact as it's in use by numexpr even though it looks like it doesn't
if w_raw is None:
return 1
if check_is_number(w_raw):
return float(w_raw)
else:
t = frame
if len(w_raw) < 3:
print('the value inside `-characters cannot represent a math function')
return 1
return float(numexpr.evaluate(w_raw[1:-1]))
def prepare_prompt(prompt_series, max_frames, frame_idx, prompt_weight_1 = 0, prompt_weight_2 = 0, prompt_weight_3 = 0, prompt_weight_4 = 0): #calculate expressions from the text input and return a string
max_f = max_frames - 1
pattern = r'`.*?`' #set so the expression will be read between two backticks (``)
regex = re.compile(pattern)
prompt_parsed = str(prompt_series)
for match in regex.finditer(prompt_parsed):
matched_string = match.group(0)
parsed_string = matched_string.replace('t', f'{frame_idx}').replace("pw_a", f"prompt_weight_1").replace("pw_b", f"prompt_weight_2").replace("pw_c", f"prompt_weight_3").replace("pw_d", f"prompt_weight_4").replace("max_f", f"{max_f}").replace('`', '') #replace t, max_f and `` respectively
parsed_value = numexpr.evaluate(parsed_string)
prompt_parsed = prompt_parsed.replace(matched_string, str(parsed_value))
return prompt_parsed.strip()
def interpolate_string(animation_prompts, max_frames, current_frame, pre_text, app_text, prompt_weight_1,
prompt_weight_2, prompt_weight_3,
prompt_weight_4): # parse the conditioning strength and determine in-betweens.
# Get prompts sorted by keyframe
max_f = max_frames # needed for numexpr even though it doesn't look like it's in use.
parsed_animation_prompts = {}
for key, value in animation_prompts.items():
if check_is_number(key): # default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_prompts[key] = value
else: # math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_prompts[int(numexpr.evaluate(key))] = value
sorted_prompts = sorted(parsed_animation_prompts.items(), key=lambda item: int(item[0]))
# Setup containers for interpolated prompts
cur_prompt_series = pd.Series([np.nan for a in range(max_frames)])
# simple array for strength values
weight_series = [np.nan] * max_frames
# in case there is only one keyed promt, set all prompts to that prompt
if len(sorted_prompts) - 1 == 0:
for i in range(0, len(cur_prompt_series) - 1):
current_prompt = sorted_prompts[0][1]
cur_prompt_series[i] = str(pre_text) + " " + str(current_prompt) + " " + str(app_text)
# Initialized outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts[i][0])
next_key = int(sorted_prompts[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(
f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt = sorted_prompts[i][1]
for f in range(current_key, next_key):
# add the appropriate prompts and weights to their respective containers.
cur_prompt_series[f] = ''
weight_series[f] = 0.0
cur_prompt_series[f] += (str(pre_text) + " " + str(current_prompt) + " " + str(app_text))
current_key = next_key
next_key = max_frames
# second loop to catch any nan runoff
for f in range(current_key, next_key):
# add the appropriate prompts and weights to their respective containers.
cur_prompt_series[f] = ''
cur_prompt_series[f] += (str(pre_text) + " " + str(current_prompt) + " " + str(app_text))
# Evaluate the current and next prompt's expressions
cur_prompt_series[current_frame] = prepare_prompt(cur_prompt_series[current_frame], max_frames, current_frame,
prompt_weight_1, prompt_weight_2, prompt_weight_3,
prompt_weight_4)
# Show the to/from prompts with evaluated expressions for transparency.
print("\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series[current_frame], "\n")
# Output methods depending if the prompts are the same or if the current frame is a keyframe.
# if it is an in-between frame and the prompts differ, composable diffusion will be performed.
return (cur_prompt_series[current_frame])
def PoolAnimConditioning(cur_prompt, nxt_prompt, weight, clip):
if str(cur_prompt) == str(nxt_prompt):
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 1:
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 0:
tokens = clip.tokenize(str(nxt_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
else:
tokens = clip.tokenize(str(nxt_prompt))
cond_from, pooled_from = clip.encode_from_tokens(tokens, return_pooled=True)
tokens = clip.tokenize(str(cur_prompt))
cond_to, pooled_to = clip.encode_from_tokens(tokens, return_pooled=True)
return addWeighted([[cond_to, {"pooled_output": pooled_to}]], [[cond_from, {"pooled_output": pooled_from}]], weight)
def SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]
def interpolate_prompts_SDXL(animation_promptsG, animation_promptsL, max_frames, current_frame, clip, app_text_G, app_text_L, pre_text_G, pre_text_L, pw_a, pw_b, pw_c, pw_d, width, height, crop_w, crop_h, target_width, target_height, print_output): #parse the conditioning strength and determine in-betweens.
#Get prompts sorted by keyframe
max_f = max_frames #needed for numexpr even though it doesn't look like it's in use.
parsed_animation_promptsG = {}
parsed_animation_promptsL = {}
for key, value in animation_promptsG.items():
if check_is_number(key): #default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_promptsG[key] = value
else: #math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_promptsG[int(numexpr.evaluate(key))] = value
sorted_prompts_G = sorted(parsed_animation_promptsG.items(), key=lambda item: int(item[0]))
for key, value in animation_promptsL.items():
if check_is_number(key): #default case 0:(1 + t %5), 30:(5-t%2)
parsed_animation_promptsL[key] = value
else: #math on the left hand side case 0:(1 + t %5), maxKeyframes/2:(5-t%2)
parsed_animation_promptsL[int(numexpr.evaluate(key))] = value
sorted_prompts_L = sorted(parsed_animation_promptsL.items(), key=lambda item: int(item[0]))
#Setup containers for interpolated prompts
cur_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])
nxt_prompt_series_G = pd.Series([np.nan for a in range(max_frames)])
cur_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])
nxt_prompt_series_L = pd.Series([np.nan for a in range(max_frames)])
#simple array for strength values
weight_series = [np.nan] * max_frames
#in case there is only one keyed promt, set all prompts to that prompt
if len(sorted_prompts_G) - 1 == 0:
for i in range(0, len(cur_prompt_series_G)-1):
current_prompt_G = sorted_prompts_G[0][1]
cur_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)
nxt_prompt_series_G[i] = str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G)
if len(sorted_prompts_L) - 1 == 0:
for i in range(0, len(cur_prompt_series_L)-1):
current_prompt_L = sorted_prompts_L[0][1]
cur_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)
nxt_prompt_series_L[i] = str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L)
#Initialized outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts_G) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts_G[i][0])
next_key = int(sorted_prompts_G[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt_G = sorted_prompts_G[i][1]
next_prompt_G = sorted_prompts_G[i + 1][1]
# Calculate how much to shift the weight from current to next prompt at each frame.
weight_step = 1 / (next_key - current_key)
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
current_weight = 1 - next_weight
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_G[f] = ''
nxt_prompt_series_G[f] = ''
weight_series[f] = 0.0
cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))
weight_series[f] += current_weight
current_key = next_key
next_key = max_frames
current_weight = 0.0
#second loop to catch any nan runoff
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_G[f] = ''
nxt_prompt_series_G[f] = ''
weight_series[f] = current_weight
cur_prompt_series_G[f] += (str(pre_text_G) + " " + str(current_prompt_G) + " " + str(app_text_G))
nxt_prompt_series_G[f] += (str(pre_text_G) + " " + str(next_prompt_G) + " " + str(app_text_G))
#Reset outside of loop for nan check
current_key = 0
next_key = 0
# For every keyframe prompt except the last
for i in range(0, len(sorted_prompts_L) - 1):
# Get current and next keyframe
current_key = int(sorted_prompts_L[i][0])
next_key = int(sorted_prompts_L[i + 1][0])
# Ensure there's no weird ordering issues or duplication in the animation prompts
# (unlikely because we sort above, and the json parser will strip dupes)
if current_key >= next_key:
print(f"WARNING: Sequential prompt keyframes {i}:{current_key} and {i + 1}:{next_key} are not monotonously increasing; skipping interpolation.")
continue
# Get current and next keyframes' positive and negative prompts (if any)
current_prompt_L = sorted_prompts_L[i][1]
next_prompt_L = sorted_prompts_L[i + 1][1]
# Calculate how much to shift the weight from current to next prompt at each frame.
weight_step = 1 / (next_key - current_key)
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
current_weight = 1 - next_weight
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_L[f] = ''
nxt_prompt_series_L[f] = ''
weight_series[f] = 0.0
cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))
weight_series[f] += current_weight
current_key = next_key
next_key = max_frames
current_weight = 0.0
#second loop to catch any nan runoff
for f in range(current_key, next_key):
next_weight = weight_step * (f - current_key)
#add the appropriate prompts and weights to their respective containers.
cur_prompt_series_L[f] = ''
nxt_prompt_series_L[f] = ''
weight_series[f] = current_weight
cur_prompt_series_L[f] += (str(pre_text_L) + " " + str(current_prompt_L) + " " + str(app_text_L))
nxt_prompt_series_L[f] += (str(pre_text_L) + " " + str(next_prompt_L) + " " + str(app_text_L))
#Evaluate the current and next prompt's expressions
cur_prompt_series_G[current_frame] = prepare_prompt(cur_prompt_series_G[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
nxt_prompt_series_G[current_frame] = prepare_prompt(nxt_prompt_series_G[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
cur_prompt_series_L[current_frame] = prepare_prompt(cur_prompt_series_L[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
nxt_prompt_series_L[current_frame] = prepare_prompt(nxt_prompt_series_L[current_frame], max_frames, current_frame, pw_a, pw_b, pw_c, pw_d)
if print_output == True:
#Show the to/from prompts with evaluated expressions for transparency.
print("\n", "G_Clip:", "\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series_G[current_frame], "\n", "Next Prompt: ", nxt_prompt_series_G[current_frame], "\n", "Strength : ", weight_series[current_frame], "\n")
print("\n", "L_Clip:", "\n", "Max Frames: ", max_frames, "\n", "Current Prompt: ", cur_prompt_series_L[current_frame], "\n", "Next Prompt: ", nxt_prompt_series_L[current_frame], "\n", "Strength : ", weight_series[current_frame], "\n")
#Output methods depending if the prompts are the same or if the current frame is a keyframe.
#if it is an in-between frame and the prompts differ, composable diffusion will be performed.
current_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
if str(cur_prompt_series_G[current_frame]) == str(nxt_prompt_series_G[current_frame]) and str(cur_prompt_series_L[current_frame]) == str(nxt_prompt_series_L[current_frame]):
return current_cond
if weight_series[current_frame] == 1:
return current_cond
if weight_series[current_frame] == 0:
next_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
return next_cond
else:
next_cond = SDXLencode(clip, width, height, crop_w, crop_h, target_width, target_height, cur_prompt_series_G[current_frame], cur_prompt_series_L[current_frame])
return addWeighted(current_cond, next_cond, weight_series[current_frame]) |