Spaces:
Running
Running
File size: 8,800 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from nodes import MAX_RESOLUTION
from impact.utils import *
import impact.core as core
from impact.core import SEG
from impact.segs_nodes import SEGSPaste
class SEGSDetailerForAnimateDiff:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"image_frames": ("IMAGE", ),
"segs": ("SEGS", ),
"guide_size": ("FLOAT", {"default": 256, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 768, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"basic_pipe": ("BASIC_PIPE",),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0})
},
"optional": {
"refiner_basic_pipe_opt": ("BASIC_PIPE",),
# TODO: "inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
# TODO: "noise_mask_feather": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
}
}
RETURN_TYPES = ("SEGS", "IMAGE")
RETURN_NAMES = ("segs", "cnet_images")
OUTPUT_IS_LIST = (False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
@staticmethod
def do_detail(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, basic_pipe, refiner_ratio=None, refiner_basic_pipe_opt=None, inpaint_model=False, noise_mask_feather=0):
model, clip, vae, positive, negative = basic_pipe
if refiner_basic_pipe_opt is None:
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None
else:
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt
segs = core.segs_scale_match(segs, image_frames.shape)
new_segs = []
cnet_image_list = []
for seg in segs[1]:
cropped_image_frames = None
for image in image_frames:
image = image.unsqueeze(0)
cropped_image = seg.cropped_image if seg.cropped_image is not None else crop_tensor4(image, seg.crop_region)
cropped_image = to_tensor(cropped_image)
if cropped_image_frames is None:
cropped_image_frames = cropped_image
else:
cropped_image_frames = torch.concat((cropped_image_frames, cropped_image), dim=0)
cropped_image_frames = cropped_image_frames.cpu().numpy()
enhanced_image_tensor, cnet_images = core.enhance_detail_for_animatediff(cropped_image_frames, model, clip, vae, guide_size, guide_size_for, max_size,
seg.bbox, seed, steps, cfg, sampler_name, scheduler,
positive, negative, denoise, seg.cropped_mask,
refiner_ratio=refiner_ratio, refiner_model=refiner_model,
refiner_clip=refiner_clip, refiner_positive=refiner_positive,
refiner_negative=refiner_negative, control_net_wrapper=seg.control_net_wrapper,
inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather)
if cnet_images is not None:
cnet_image_list.extend(cnet_images)
if enhanced_image_tensor is None:
new_cropped_image = cropped_image_frames
else:
new_cropped_image = enhanced_image_tensor.cpu().numpy()
new_seg = SEG(new_cropped_image, seg.cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, None)
new_segs.append(new_seg)
return (segs[0], new_segs), cnet_image_list
def doit(self, image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, basic_pipe, refiner_ratio=None, refiner_basic_pipe_opt=None, inpaint_model=False, noise_mask_feather=0):
segs, cnet_images = SEGSDetailerForAnimateDiff.do_detail(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler, denoise, basic_pipe, refiner_ratio, refiner_basic_pipe_opt,
inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather)
if len(cnet_images) == 0:
cnet_images = [empty_pil_tensor()]
return (segs, cnet_images)
class DetailerForEachPipeForAnimateDiff:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"image_frames": ("IMAGE", ),
"segs": ("SEGS", ),
"guide_size": ("FLOAT", {"default": 384, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}),
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}),
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}),
"basic_pipe": ("BASIC_PIPE", ),
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}),
},
"optional": {
"detailer_hook": ("DETAILER_HOOK",),
"refiner_basic_pipe_opt": ("BASIC_PIPE",),
# "inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
# "noise_mask_feather": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE")
RETURN_NAMES = ("image", "segs", "basic_pipe", "cnet_images")
OUTPUT_IS_LIST = (False, False, False, True)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detailer"
@staticmethod
def doit(image_frames, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, feather, basic_pipe, refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None,
inpaint_model=False, noise_mask_feather=0):
enhanced_segs = []
cnet_image_list = []
for sub_seg in segs[1]:
single_seg = segs[0], [sub_seg]
enhanced_seg, cnet_images = SEGSDetailerForAnimateDiff().do_detail(image_frames, single_seg, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler,
denoise, basic_pipe, refiner_ratio, refiner_basic_pipe_opt, inpaint_model, noise_mask_feather)
image_frames = SEGSPaste.doit(image_frames, enhanced_seg, feather, alpha=255)[0]
if cnet_images is not None:
cnet_image_list.extend(cnet_images)
if detailer_hook is not None:
detailer_hook.post_paste(image_frames)
enhanced_segs += enhanced_seg[1]
new_segs = segs[0], enhanced_segs
return image_frames, new_segs, basic_pipe, cnet_image_list
|