Spaces:
Running
Running
import math | |
import torch.nn as nn | |
class CA_layer(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(CA_layer, self).__init__() | |
# global average pooling | |
self.gap = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Conv2d(channel, channel // reduction, kernel_size=(1, 1), bias=False), | |
nn.GELU(), | |
nn.Conv2d(channel // reduction, channel, kernel_size=(1, 1), bias=False), | |
# nn.Sigmoid() | |
) | |
def forward(self, x): | |
y = self.fc(self.gap(x)) | |
return x * y.expand_as(x) | |
class Simple_CA_layer(nn.Module): | |
def __init__(self, channel): | |
super(Simple_CA_layer, self).__init__() | |
self.gap = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Conv2d( | |
in_channels=channel, | |
out_channels=channel, | |
kernel_size=1, | |
padding=0, | |
stride=1, | |
groups=1, | |
bias=True, | |
) | |
def forward(self, x): | |
return x * self.fc(self.gap(x)) | |
class ECA_layer(nn.Module): | |
"""Constructs a ECA module. | |
Args: | |
channel: Number of channels of the input feature map | |
k_size: Adaptive selection of kernel size | |
""" | |
def __init__(self, channel): | |
super(ECA_layer, self).__init__() | |
b = 1 | |
gamma = 2 | |
k_size = int(abs(math.log(channel, 2) + b) / gamma) | |
k_size = k_size if k_size % 2 else k_size + 1 | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.conv = nn.Conv1d( | |
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False | |
) | |
# self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
# x: input features with shape [b, c, h, w] | |
# b, c, h, w = x.size() | |
# feature descriptor on the global spatial information | |
y = self.avg_pool(x) | |
# Two different branches of ECA module | |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) | |
# Multi-scale information fusion | |
# y = self.sigmoid(y) | |
return x * y.expand_as(x) | |
class ECA_MaxPool_layer(nn.Module): | |
"""Constructs a ECA module. | |
Args: | |
channel: Number of channels of the input feature map | |
k_size: Adaptive selection of kernel size | |
""" | |
def __init__(self, channel): | |
super(ECA_MaxPool_layer, self).__init__() | |
b = 1 | |
gamma = 2 | |
k_size = int(abs(math.log(channel, 2) + b) / gamma) | |
k_size = k_size if k_size % 2 else k_size + 1 | |
self.max_pool = nn.AdaptiveMaxPool2d(1) | |
self.conv = nn.Conv1d( | |
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False | |
) | |
# self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
# x: input features with shape [b, c, h, w] | |
# b, c, h, w = x.size() | |
# feature descriptor on the global spatial information | |
y = self.max_pool(x) | |
# Two different branches of ECA module | |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) | |
# Multi-scale information fusion | |
# y = self.sigmoid(y) | |
return x * y.expand_as(x) | |