Spaces:
Running
Running
import torch | |
from comfy.ldm.modules.attention import optimized_attention_for_device | |
class CLIPAttention(torch.nn.Module): | |
def __init__(self, embed_dim, heads, dtype, device, operations): | |
super().__init__() | |
self.heads = heads | |
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) | |
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) | |
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) | |
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) | |
def forward(self, x, mask=None, optimized_attention=None): | |
q = self.q_proj(x) | |
k = self.k_proj(x) | |
v = self.v_proj(x) | |
out = optimized_attention(q, k, v, self.heads, mask) | |
return self.out_proj(out) | |
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a), | |
"gelu": torch.nn.functional.gelu, | |
} | |
class CLIPMLP(torch.nn.Module): | |
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations): | |
super().__init__() | |
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device) | |
self.activation = ACTIVATIONS[activation] | |
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.activation(x) | |
x = self.fc2(x) | |
return x | |
class CLIPLayer(torch.nn.Module): | |
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): | |
super().__init__() | |
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) | |
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations) | |
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device) | |
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations) | |
def forward(self, x, mask=None, optimized_attention=None): | |
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention) | |
x += self.mlp(self.layer_norm2(x)) | |
return x | |
class CLIPEncoder(torch.nn.Module): | |
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations): | |
super().__init__() | |
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)]) | |
def forward(self, x, mask=None, intermediate_output=None): | |
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) | |
if intermediate_output is not None: | |
if intermediate_output < 0: | |
intermediate_output = len(self.layers) + intermediate_output | |
intermediate = None | |
for i, l in enumerate(self.layers): | |
x = l(x, mask, optimized_attention) | |
if i == intermediate_output: | |
intermediate = x.clone() | |
return x, intermediate | |
class CLIPEmbeddings(torch.nn.Module): | |
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None): | |
super().__init__() | |
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device) | |
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) | |
def forward(self, input_tokens): | |
return self.token_embedding(input_tokens) + self.position_embedding.weight | |
class CLIPTextModel_(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
num_layers = config_dict["num_hidden_layers"] | |
embed_dim = config_dict["hidden_size"] | |
heads = config_dict["num_attention_heads"] | |
intermediate_size = config_dict["intermediate_size"] | |
intermediate_activation = config_dict["hidden_act"] | |
super().__init__() | |
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device) | |
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) | |
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device) | |
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): | |
x = self.embeddings(input_tokens) | |
mask = None | |
if attention_mask is not None: | |
mask = 1.0 - attention_mask.to(x.dtype).unsqueeze(1).unsqueeze(1).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) | |
mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) | |
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1) | |
if mask is not None: | |
mask += causal_mask | |
else: | |
mask = causal_mask | |
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output) | |
x = self.final_layer_norm(x) | |
if i is not None and final_layer_norm_intermediate: | |
i = self.final_layer_norm(i) | |
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),] | |
return x, i, pooled_output | |
class CLIPTextModel(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
super().__init__() | |
self.num_layers = config_dict["num_hidden_layers"] | |
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations) | |
self.dtype = dtype | |
def get_input_embeddings(self): | |
return self.text_model.embeddings.token_embedding | |
def set_input_embeddings(self, embeddings): | |
self.text_model.embeddings.token_embedding = embeddings | |
def forward(self, *args, **kwargs): | |
return self.text_model(*args, **kwargs) | |
class CLIPVisionEmbeddings(torch.nn.Module): | |
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None): | |
super().__init__() | |
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device)) | |
self.patch_embedding = operations.Conv2d( | |
in_channels=num_channels, | |
out_channels=embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
dtype=dtype, | |
device=device | |
) | |
num_patches = (image_size // patch_size) ** 2 | |
num_positions = num_patches + 1 | |
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device) | |
def forward(self, pixel_values): | |
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2) | |
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device) | |
class CLIPVision(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
super().__init__() | |
num_layers = config_dict["num_hidden_layers"] | |
embed_dim = config_dict["hidden_size"] | |
heads = config_dict["num_attention_heads"] | |
intermediate_size = config_dict["intermediate_size"] | |
intermediate_activation = config_dict["hidden_act"] | |
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations) | |
self.pre_layrnorm = operations.LayerNorm(embed_dim) | |
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) | |
self.post_layernorm = operations.LayerNorm(embed_dim) | |
def forward(self, pixel_values, attention_mask=None, intermediate_output=None): | |
x = self.embeddings(pixel_values) | |
x = self.pre_layrnorm(x) | |
#TODO: attention_mask? | |
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output) | |
pooled_output = self.post_layernorm(x[:, 0, :]) | |
return x, i, pooled_output | |
class CLIPVisionModelProjection(torch.nn.Module): | |
def __init__(self, config_dict, dtype, device, operations): | |
super().__init__() | |
self.vision_model = CLIPVision(config_dict, dtype, device, operations) | |
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False) | |
def forward(self, *args, **kwargs): | |
x = self.vision_model(*args, **kwargs) | |
out = self.visual_projection(x[2]) | |
return (x[0], x[1], out) | |