Xue-She Wang
init
0d95f10
raw
history blame
12.7 kB
from contextlib import contextmanager
import hashlib
import math
from pathlib import Path
import shutil
import urllib
import warnings
from PIL import Image
import torch
from torch import nn, optim
from torch.utils import data
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
"""Apply passed in transforms for HuggingFace Datasets."""
images = [transform(image.convert(mode)) for image in examples[image_key]]
return {image_key: images}
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
expanded = x[(...,) + (None,) * dims_to_append]
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
# https://github.com/pytorch/pytorch/issues/84364
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
def n_params(module):
"""Returns the number of trainable parameters in a module."""
return sum(p.numel() for p in module.parameters())
def download_file(path, url, digest=None):
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
path = Path(path)
path.parent.mkdir(parents=True, exist_ok=True)
if not path.exists():
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
shutil.copyfileobj(response, f)
if digest is not None:
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
if digest != file_digest:
raise OSError(f'hash of {path} (url: {url}) failed to validate')
return path
@contextmanager
def train_mode(model, mode=True):
"""A context manager that places a model into training mode and restores
the previous mode on exit."""
modes = [module.training for module in model.modules()]
try:
yield model.train(mode)
finally:
for i, module in enumerate(model.modules()):
module.training = modes[i]
def eval_mode(model):
"""A context manager that places a model into evaluation mode and restores
the previous mode on exit."""
return train_mode(model, False)
@torch.no_grad()
def ema_update(model, averaged_model, decay):
"""Incorporates updated model parameters into an exponential moving averaged
version of a model. It should be called after each optimizer step."""
model_params = dict(model.named_parameters())
averaged_params = dict(averaged_model.named_parameters())
assert model_params.keys() == averaged_params.keys()
for name, param in model_params.items():
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
model_buffers = dict(model.named_buffers())
averaged_buffers = dict(averaged_model.named_buffers())
assert model_buffers.keys() == averaged_buffers.keys()
for name, buf in model_buffers.items():
averaged_buffers[name].copy_(buf)
class EMAWarmup:
"""Implements an EMA warmup using an inverse decay schedule.
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 1.
min_value (float): The minimum EMA decay rate. Default: 0.
max_value (float): The maximum EMA decay rate. Default: 1.
start_at (int): The epoch to start averaging at. Default: 0.
last_epoch (int): The index of last epoch. Default: 0.
"""
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
last_epoch=0):
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
self.max_value = max_value
self.start_at = start_at
self.last_epoch = last_epoch
def state_dict(self):
"""Returns the state of the class as a :class:`dict`."""
return dict(self.__dict__.items())
def load_state_dict(self, state_dict):
"""Loads the class's state.
Args:
state_dict (dict): scaler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def get_value(self):
"""Gets the current EMA decay rate."""
epoch = max(0, self.last_epoch - self.start_at)
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
def step(self):
"""Updates the step count."""
self.last_epoch += 1
class InverseLR(optim.lr_scheduler._LRScheduler):
"""Implements an inverse decay learning rate schedule with an optional exponential
warmup. When last_epoch=-1, sets initial lr as lr.
inv_gamma is the number of steps/epochs required for the learning rate to decay to
(1 / 2)**power of its original value.
Args:
optimizer (Optimizer): Wrapped optimizer.
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
power (float): Exponential factor of learning rate decay. Default: 1.
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
Default: 0.
min_lr (float): The minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
last_epoch=-1, verbose=False):
self.inv_gamma = inv_gamma
self.power = power
if not 0. <= warmup < 1:
raise ValueError('Invalid value for warmup')
self.warmup = warmup
self.min_lr = min_lr
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.")
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
warmup = 1 - self.warmup ** (self.last_epoch + 1)
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
return [warmup * max(self.min_lr, base_lr * lr_mult)
for base_lr in self.base_lrs]
class ExponentialLR(optim.lr_scheduler._LRScheduler):
"""Implements an exponential learning rate schedule with an optional exponential
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
continuously by decay (default 0.5) every num_steps steps.
Args:
optimizer (Optimizer): Wrapped optimizer.
num_steps (float): The number of steps to decay the learning rate by decay in.
decay (float): The factor by which to decay the learning rate every num_steps
steps. Default: 0.5.
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
Default: 0.
min_lr (float): The minimum learning rate. Default: 0.
last_epoch (int): The index of last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
"""
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
last_epoch=-1, verbose=False):
self.num_steps = num_steps
self.decay = decay
if not 0. <= warmup < 1:
raise ValueError('Invalid value for warmup')
self.warmup = warmup
self.min_lr = min_lr
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.")
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
warmup = 1 - self.warmup ** (self.last_epoch + 1)
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
return [warmup * max(self.min_lr, base_lr * lr_mult)
for base_lr in self.base_lrs]
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
"""Draws samples from an lognormal distribution."""
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
"""Draws samples from an optionally truncated log-logistic distribution."""
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
return u.logit().mul(scale).add(loc).exp().to(dtype)
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
"""Draws samples from an log-uniform distribution."""
min_value = math.log(min_value)
max_value = math.log(max_value)
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
"""Draws samples from a truncated v-diffusion training timestep distribution."""
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
return torch.tan(u * math.pi / 2) * sigma_data
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
"""Draws samples from a split lognormal distribution."""
n = torch.randn(shape, device=device, dtype=dtype).abs()
u = torch.rand(shape, device=device, dtype=dtype)
n_left = n * -scale_1 + loc
n_right = n * scale_2 + loc
ratio = scale_1 / (scale_1 + scale_2)
return torch.where(u < ratio, n_left, n_right).exp()
class FolderOfImages(data.Dataset):
"""Recursively finds all images in a directory. It does not support
classes/targets."""
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
def __init__(self, root, transform=None):
super().__init__()
self.root = Path(root)
self.transform = nn.Identity() if transform is None else transform
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
def __repr__(self):
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
def __len__(self):
return len(self.paths)
def __getitem__(self, key):
path = self.paths[key]
with open(path, 'rb') as f:
image = Image.open(f).convert('RGB')
image = self.transform(image)
return image,
class CSVLogger:
def __init__(self, filename, columns):
self.filename = Path(filename)
self.columns = columns
if self.filename.exists():
self.file = open(self.filename, 'a')
else:
self.file = open(self.filename, 'w')
self.write(*self.columns)
def write(self, *args):
print(*args, sep=',', file=self.file, flush=True)
@contextmanager
def tf32_mode(cudnn=None, matmul=None):
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
cudnn_old = torch.backends.cudnn.allow_tf32
matmul_old = torch.backends.cuda.matmul.allow_tf32
try:
if cudnn is not None:
torch.backends.cudnn.allow_tf32 = cudnn
if matmul is not None:
torch.backends.cuda.matmul.allow_tf32 = matmul
yield
finally:
if cudnn is not None:
torch.backends.cudnn.allow_tf32 = cudnn_old
if matmul is not None:
torch.backends.cuda.matmul.allow_tf32 = matmul_old