Spaces:
Running
Running
import torch | |
# import pytorch_lightning as pl | |
import torch.nn.functional as F | |
from contextlib import contextmanager | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution | |
from comfy.ldm.util import instantiate_from_config | |
from comfy.ldm.modules.ema import LitEma | |
import comfy.ops | |
class DiagonalGaussianRegularizer(torch.nn.Module): | |
def __init__(self, sample: bool = True): | |
super().__init__() | |
self.sample = sample | |
def get_trainable_parameters(self) -> Any: | |
yield from () | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
log = dict() | |
posterior = DiagonalGaussianDistribution(z) | |
if self.sample: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
kl_loss = posterior.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
log["kl_loss"] = kl_loss | |
return z, log | |
class AbstractAutoencoder(torch.nn.Module): | |
""" | |
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, | |
unCLIP models, etc. Hence, it is fairly general, and specific features | |
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. | |
""" | |
def __init__( | |
self, | |
ema_decay: Union[None, float] = None, | |
monitor: Union[None, str] = None, | |
input_key: str = "jpg", | |
**kwargs, | |
): | |
super().__init__() | |
self.input_key = input_key | |
self.use_ema = ema_decay is not None | |
if monitor is not None: | |
self.monitor = monitor | |
if self.use_ema: | |
self.model_ema = LitEma(self, decay=ema_decay) | |
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
def get_input(self, batch) -> Any: | |
raise NotImplementedError() | |
def on_train_batch_end(self, *args, **kwargs): | |
# for EMA computation | |
if self.use_ema: | |
self.model_ema(self) | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.parameters()) | |
self.model_ema.copy_to(self) | |
if context is not None: | |
logpy.info(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.parameters()) | |
if context is not None: | |
logpy.info(f"{context}: Restored training weights") | |
def encode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("encode()-method of abstract base class called") | |
def decode(self, *args, **kwargs) -> torch.Tensor: | |
raise NotImplementedError("decode()-method of abstract base class called") | |
def instantiate_optimizer_from_config(self, params, lr, cfg): | |
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") | |
return get_obj_from_str(cfg["target"])( | |
params, lr=lr, **cfg.get("params", dict()) | |
) | |
def configure_optimizers(self) -> Any: | |
raise NotImplementedError() | |
class AutoencodingEngine(AbstractAutoencoder): | |
""" | |
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL | |
(we also restore them explicitly as special cases for legacy reasons). | |
Regularizations such as KL or VQ are moved to the regularizer class. | |
""" | |
def __init__( | |
self, | |
*args, | |
encoder_config: Dict, | |
decoder_config: Dict, | |
regularizer_config: Dict, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) | |
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) | |
self.regularization: AbstractRegularizer = instantiate_from_config( | |
regularizer_config | |
) | |
def get_last_layer(self): | |
return self.decoder.get_last_layer() | |
def encode( | |
self, | |
x: torch.Tensor, | |
return_reg_log: bool = False, | |
unregularized: bool = False, | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
z = self.encoder(x) | |
if unregularized: | |
return z, dict() | |
z, reg_log = self.regularization(z) | |
if return_reg_log: | |
return z, reg_log | |
return z | |
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = self.decoder(z, **kwargs) | |
return x | |
def forward( | |
self, x: torch.Tensor, **additional_decode_kwargs | |
) -> Tuple[torch.Tensor, torch.Tensor, dict]: | |
z, reg_log = self.encode(x, return_reg_log=True) | |
dec = self.decode(z, **additional_decode_kwargs) | |
return z, dec, reg_log | |
class AutoencodingEngineLegacy(AutoencodingEngine): | |
def __init__(self, embed_dim: int, **kwargs): | |
self.max_batch_size = kwargs.pop("max_batch_size", None) | |
ddconfig = kwargs.pop("ddconfig") | |
super().__init__( | |
encoder_config={ | |
"target": "comfy.ldm.modules.diffusionmodules.model.Encoder", | |
"params": ddconfig, | |
}, | |
decoder_config={ | |
"target": "comfy.ldm.modules.diffusionmodules.model.Decoder", | |
"params": ddconfig, | |
}, | |
**kwargs, | |
) | |
self.quant_conv = comfy.ops.disable_weight_init.Conv2d( | |
(1 + ddconfig["double_z"]) * ddconfig["z_channels"], | |
(1 + ddconfig["double_z"]) * embed_dim, | |
1, | |
) | |
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
def get_autoencoder_params(self) -> list: | |
params = super().get_autoencoder_params() | |
return params | |
def encode( | |
self, x: torch.Tensor, return_reg_log: bool = False | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: | |
if self.max_batch_size is None: | |
z = self.encoder(x) | |
z = self.quant_conv(z) | |
else: | |
N = x.shape[0] | |
bs = self.max_batch_size | |
n_batches = int(math.ceil(N / bs)) | |
z = list() | |
for i_batch in range(n_batches): | |
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) | |
z_batch = self.quant_conv(z_batch) | |
z.append(z_batch) | |
z = torch.cat(z, 0) | |
z, reg_log = self.regularization(z) | |
if return_reg_log: | |
return z, reg_log | |
return z | |
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: | |
if self.max_batch_size is None: | |
dec = self.post_quant_conv(z) | |
dec = self.decoder(dec, **decoder_kwargs) | |
else: | |
N = z.shape[0] | |
bs = self.max_batch_size | |
n_batches = int(math.ceil(N / bs)) | |
dec = list() | |
for i_batch in range(n_batches): | |
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) | |
dec_batch = self.decoder(dec_batch, **decoder_kwargs) | |
dec.append(dec_batch) | |
dec = torch.cat(dec, 0) | |
return dec | |
class AutoencoderKL(AutoencodingEngineLegacy): | |
def __init__(self, **kwargs): | |
if "lossconfig" in kwargs: | |
kwargs["loss_config"] = kwargs.pop("lossconfig") | |
super().__init__( | |
regularizer_config={ | |
"target": ( | |
"comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" | |
) | |
}, | |
**kwargs, | |
) | |