Spaces:
Running
Running
import torch | |
import os | |
import sys | |
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy")) | |
import comfy.model_management | |
import comfy.sample | |
MAX_RESOLUTION=8192 | |
def prepare_mask(mask, shape): | |
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") | |
mask = mask.expand((-1,shape[1],-1,-1)) | |
if mask.shape[0] < shape[0]: | |
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] | |
return mask | |
class NoisyLatentImage: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"source":(["CPU", "GPU"], ), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), | |
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "create_noisy_latents" | |
CATEGORY = "latent/noise" | |
def create_noisy_latents(self, source, seed, width, height, batch_size): | |
torch.manual_seed(seed) | |
if source == "CPU": | |
device = "cpu" | |
else: | |
device = comfy.model_management.get_torch_device() | |
noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu() | |
return ({"samples":noise}, ) | |
class DuplicateBatchIndex: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"latents":("LATENT",), | |
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "duplicate_index" | |
CATEGORY = "latent" | |
def duplicate_index(self, latents, batch_index, batch_size): | |
s = latents.copy() | |
batch_index = min(s["samples"].shape[0] - 1, batch_index) | |
target = s["samples"][batch_index:batch_index + 1].clone() | |
target = target.repeat((batch_size,1,1,1)) | |
s["samples"] = target | |
return (s,) | |
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475 | |
def slerp(val, low, high): | |
dims = low.shape | |
#flatten to batches | |
low = low.reshape(dims[0], -1) | |
high = high.reshape(dims[0], -1) | |
low_norm = low/torch.norm(low, dim=1, keepdim=True) | |
high_norm = high/torch.norm(high, dim=1, keepdim=True) | |
# in case we divide by zero | |
low_norm[low_norm != low_norm] = 0.0 | |
high_norm[high_norm != high_norm] = 0.0 | |
omega = torch.acos((low_norm*high_norm).sum(1)) | |
so = torch.sin(omega) | |
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high | |
return res.reshape(dims) | |
class LatentSlerp: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"latents1":("LATENT",), | |
"factor": ("FLOAT", {"default": .5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}, | |
"optional" :{ | |
"latents2":("LATENT",), | |
"mask": ("MASK", ), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "slerp_latents" | |
CATEGORY = "latent" | |
def slerp_latents(self, latents1, factor, latents2=None, mask=None): | |
s = latents1.copy() | |
if latents2 is None: | |
return (s,) | |
if latents1["samples"].shape != latents2["samples"].shape: | |
print("warning, shapes in LatentSlerp not the same, ignoring") | |
return (s,) | |
slerped = slerp(factor, latents1["samples"].clone(), latents2["samples"].clone()) | |
if mask is not None: | |
mask = prepare_mask(mask, slerped.shape) | |
slerped = mask * slerped + (1-mask) * latents1["samples"] | |
s["samples"] = slerped | |
return (s,) | |
class GetSigma: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"steps": ("INT", {"default": 10000, "min": 0, "max": 10000}), | |
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
"end_at_step": ("INT", {"default": 10000, "min": 1, "max": 10000}), | |
}} | |
RETURN_TYPES = ("FLOAT",) | |
FUNCTION = "calc_sigma" | |
CATEGORY = "latent/noise" | |
def calc_sigma(self, model, sampler_name, scheduler, steps, start_at_step, end_at_step): | |
device = comfy.model_management.get_torch_device() | |
end_at_step = min(steps, end_at_step) | |
start_at_step = min(start_at_step, end_at_step) | |
real_model = None | |
comfy.model_management.load_model_gpu(model) | |
real_model = model.model | |
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) | |
sigmas = sampler.sigmas | |
sigma = sigmas[start_at_step] - sigmas[end_at_step] | |
sigma /= model.model.latent_format.scale_factor | |
return (sigma.cpu().numpy(),) | |
class InjectNoise: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"latents":("LATENT",), | |
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}), | |
}, | |
"optional":{ | |
"noise": ("LATENT",), | |
"mask": ("MASK", ), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "inject_noise" | |
CATEGORY = "latent/noise" | |
def inject_noise(self, latents, strength, noise=None, mask=None): | |
s = latents.copy() | |
if noise is None: | |
return (s,) | |
if latents["samples"].shape != noise["samples"].shape: | |
print("warning, shapes in InjectNoise not the same, ignoring") | |
return (s,) | |
noised = s["samples"].clone() + noise["samples"].clone() * strength | |
if mask is not None: | |
mask = prepare_mask(mask, noised.shape) | |
noised = mask * noised + (1-mask) * latents["samples"] | |
s["samples"] = noised | |
return (s,) | |
class Unsampler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"end_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"normalize": (["disable", "enable"], ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"latent_image": ("LATENT", ), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "unsampler" | |
CATEGORY = "sampling" | |
def unsampler(self, model, cfg, sampler_name, steps, end_at_step, scheduler, normalize, positive, negative, latent_image): | |
normalize = normalize == "enable" | |
device = comfy.model_management.get_torch_device() | |
latent = latent_image | |
latent_image = latent["samples"] | |
end_at_step = min(end_at_step, steps-1) | |
end_at_step = steps - end_at_step | |
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = comfy.sample.prepare_mask(latent["noise_mask"], noise.shape, device) | |
real_model = None | |
real_model = model.model | |
noise = noise.to(device) | |
latent_image = latent_image.to(device) | |
positive = comfy.sample.convert_cond(positive) | |
negative = comfy.sample.convert_cond(negative) | |
models, inference_memory = comfy.sample.get_additional_models(positive, negative, model.model_dtype()) | |
comfy.model_management.load_models_gpu([model] + models, model.memory_required(noise.shape) + inference_memory) | |
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) | |
sigmas = sigmas = sampler.sigmas.flip(0) + 0.0001 | |
pbar = comfy.utils.ProgressBar(steps) | |
def callback(step, x0, x, total_steps): | |
pbar.update_absolute(step + 1, total_steps) | |
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, force_full_denoise=False, denoise_mask=noise_mask, sigmas=sigmas, start_step=0, last_step=end_at_step, callback=callback) | |
if normalize: | |
#technically doesn't normalize because unsampling is not guaranteed to end at a std given by the schedule | |
samples -= samples.mean() | |
samples /= samples.std() | |
samples = samples.cpu() | |
comfy.sample.cleanup_additional_models(models) | |
out = latent.copy() | |
out["samples"] = samples | |
return (out, ) | |
NODE_CLASS_MAPPINGS = { | |
"BNK_NoisyLatentImage": NoisyLatentImage, | |
#"BNK_DuplicateBatchIndex": DuplicateBatchIndex, | |
"BNK_SlerpLatent": LatentSlerp, | |
"BNK_GetSigma": GetSigma, | |
"BNK_InjectNoise": InjectNoise, | |
"BNK_Unsampler": Unsampler, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"BNK_NoisyLatentImage": "Noisy Latent Image", | |
#"BNK_DuplicateBatchIndex": "Duplicate Batch Index", | |
"BNK_SlerpLatent": "Slerp Latents", | |
"BNK_GetSigma": "Get Sigma", | |
"BNK_InjectNoise": "Inject Noise", | |
"BNK_Unsampler": "Unsampler", | |
} | |