daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
19.4 kB
import numpy as np
from PIL import Image, ImageFilter
import torch
import torch.nn.functional as F
from torchvision.transforms import GaussianBlur
import math
if (not hasattr(Image, 'Resampling')): # For older versions of Pillow
Image.Resampling = Image
BLUR_KERNEL_SIZE = 15
def tensor_to_pil(img_tensor, batch_index=0):
# Takes an image in a batch in the form of a tensor of shape [batch_size, channels, height, width]
# and returns an PIL Image with the corresponding mode deduced by the number of channels
# Take the image in the batch given by batch_index
img_tensor = img_tensor[batch_index].unsqueeze(0)
i = 255. * img_tensor.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze())
return img
def pil_to_tensor(image):
# Takes a PIL image and returns a tensor of shape [1, height, width, channels]
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image).unsqueeze(0)
if len(image.shape) == 3: # If the image is grayscale, add a channel dimension
image = image.unsqueeze(-1)
return image
def controlnet_hint_to_pil(tensor, batch_index=0):
return tensor_to_pil(tensor.movedim(1, -1), batch_index)
def pil_to_controlnet_hint(img):
return pil_to_tensor(img).movedim(-1, 1)
def crop_tensor(tensor, region):
# Takes a tensor of shape [batch_size, height, width, channels] and crops it to the given region
x1, y1, x2, y2 = region
return tensor[:, y1:y2, x1:x2, :]
def resize_tensor(tensor, size, mode="nearest-exact"):
# Takes a tensor of shape [B, C, H, W] and resizes
# it to a shape of [B, C, size[0], size[1]] using the given mode
return torch.nn.functional.interpolate(tensor, size=size, mode=mode)
def get_crop_region(mask, pad=0):
# Takes a black and white PIL image in 'L' mode and returns the coordinates of the white rectangular mask region
# Should be equivalent to the get_crop_region function from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/masking.py
coordinates = mask.getbbox()
if coordinates is not None:
x1, y1, x2, y2 = coordinates
else:
x1, y1, x2, y2 = mask.width, mask.height, 0, 0
# Apply padding
x1 = max(x1 - pad, 0)
y1 = max(y1 - pad, 0)
x2 = min(x2 + pad, mask.width)
y2 = min(y2 + pad, mask.height)
return fix_crop_region((x1, y1, x2, y2), (mask.width, mask.height))
def fix_crop_region(region, image_size):
# Remove the extra pixel added by the get_crop_region function
image_width, image_height = image_size
x1, y1, x2, y2 = region
if x2 < image_width:
x2 -= 1
if y2 < image_height:
y2 -= 1
return x1, y1, x2, y2
def expand_crop(region, width, height, target_width, target_height):
'''
Expands a crop region to a specified target size.
:param region: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the rectangular region. Expected to have x2 > x1 and y2 > y1.
:param width: The width of the image the crop region is from.
:param height: The height of the image the crop region is from.
:param target_width: The desired width of the crop region.
:param target_height: The desired height of the crop region.
'''
x1, y1, x2, y2 = region
actual_width = x2 - x1
actual_height = y2 - y1
# target_width = math.ceil(actual_width / 8) * 8
# target_height = math.ceil(actual_height / 8) * 8
# Try to expand region to the right of half the difference
width_diff = target_width - actual_width
x2 = min(x2 + width_diff // 2, width)
# Expand region to the left of the difference including the pixels that could not be expanded to the right
width_diff = target_width - (x2 - x1)
x1 = max(x1 - width_diff, 0)
# Try the right again
width_diff = target_width - (x2 - x1)
x2 = min(x2 + width_diff, width)
# Try to expand region to the bottom of half the difference
height_diff = target_height - actual_height
y2 = min(y2 + height_diff // 2, height)
# Expand region to the top of the difference including the pixels that could not be expanded to the bottom
height_diff = target_height - (y2 - y1)
y1 = max(y1 - height_diff, 0)
# Try the bottom again
height_diff = target_height - (y2 - y1)
y2 = min(y2 + height_diff, height)
return (x1, y1, x2, y2), (target_width, target_height)
def resize_region(region, init_size, resize_size):
# Resize a crop so that it fits an image that was resized to the given width and height
x1, y1, x2, y2 = region
init_width, init_height = init_size
resize_width, resize_height = resize_size
x1 = math.floor(x1 * resize_width / init_width)
x2 = math.ceil(x2 * resize_width / init_width)
y1 = math.floor(y1 * resize_height / init_height)
y2 = math.ceil(y2 * resize_height / init_height)
return (x1, y1, x2, y2)
def pad_image(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
for i in range(left_pad):
edge = left_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // left_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i, i * top_pad // left_pad))
for i in range(right_pad):
edge = right_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // right_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (new_width - 1 - i, i * top_pad // right_pad))
for i in range(top_pad):
edge = top_edge.resize(
(new_width - i * (left_pad + right_pad) // top_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // top_pad, i))
for i in range(bottom_pad):
edge = bottom_edge.resize(
(new_width - i * (left_pad + right_pad) // bottom_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // bottom_pad, new_height - 1 - i))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_image2(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
Faster than pad_image, but only pads with edge data in straight lines.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
if left_pad > 0:
padded_image.paste(left_edge.resize((left_pad, new_height), resample=Image.Resampling.NEAREST), (0, 0))
if right_pad > 0:
padded_image.paste(right_edge.resize((right_pad, new_height),
resample=Image.Resampling.NEAREST), (new_width - right_pad, 0))
if top_pad > 0:
padded_image.paste(top_edge.resize((new_width, top_pad), resample=Image.Resampling.NEAREST), (0, 0))
if bottom_pad > 0:
padded_image.paste(bottom_edge.resize((new_width, bottom_pad),
resample=Image.Resampling.NEAREST), (0, new_height - bottom_pad))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_tensor(tensor, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image tensor with the given number of pixels on each side and fills the padding with data from the edges.
:param tensor: A tensor of shape [B, H, W, C]
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, H + top_pad + bottom_pad, W + left_pad + right_pad, C]
'''
batch_size, channels, height, width = tensor.shape
h_pad = left_pad + right_pad
v_pad = top_pad + bottom_pad
new_width = width + h_pad
new_height = height + v_pad
# Create empty image
padded = torch.zeros((batch_size, channels, new_height, new_width), dtype=tensor.dtype)
# Copy the original image into the centor of the padded tensor
padded[:, :, top_pad:top_pad + height, left_pad:left_pad + width] = tensor
# Duplicate the edges of the original image into the padding
if top_pad > 0:
padded[:, :, :top_pad, :] = padded[:, :, top_pad:top_pad + 1, :] # Top edge
if bottom_pad > 0:
padded[:, :, -bottom_pad:, :] = padded[:, :, -bottom_pad - 1:-bottom_pad, :] # Bottom edge
if left_pad > 0:
padded[:, :, :, :left_pad] = padded[:, :, :, left_pad:left_pad + 1] # Left edge
if right_pad > 0:
padded[:, :, :, -right_pad:] = padded[:, :, :, -right_pad - 1:-right_pad] # Right edge
return padded
def resize_and_pad_image(image, width, height, fill=False, blur=False):
'''
Resizes an image to the given width and height and pads it to the given width and height.
:param image: A PIL image
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A PIL image of size (width, height)
'''
width_ratio = width / image.width
height_ratio = height / image.height
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(image.width * resize_ratio)
resize_height = round(image.height * resize_ratio)
resized = image.resize((resize_width, resize_height), resample=Image.Resampling.LANCZOS)
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_image2(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = result.resize((width, height), resample=Image.Resampling.LANCZOS)
return result, (horizontal_pad, vertical_pad)
def resize_and_pad_tensor(tensor, width, height, fill=False, blur=False):
'''
Resizes an image tensor to the given width and height and pads it to the given width and height.
:param tensor: A tensor of shape [B, H, W, C]
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, height, width, C]
'''
# Resize the image to the closest size that maintains the aspect ratio
width_ratio = width / tensor.shape[3]
height_ratio = height / tensor.shape[2]
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(tensor.shape[3] * resize_ratio)
resize_height = round(tensor.shape[2] * resize_ratio)
resized = F.interpolate(tensor, size=(resize_height, resize_width), mode='nearest-exact')
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_tensor(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = F.interpolate(result, size=(height, width), mode='nearest-exact')
return result
def crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "control" not in cond_dict:
return
c = cond_dict["control"]
controlnet = c.copy()
cond_dict["control"] = controlnet
while c is not None:
# hint is shape (B, C, H, W)
hint = controlnet.cond_hint_original
resized_crop = resize_region(region, canvas_size, hint.shape[:-3:-1])
hint = crop_tensor(hint.movedim(1, -1), resized_crop).movedim(-1, 1)
hint = resize_tensor(hint, tile_size[::-1])
controlnet.cond_hint_original = hint
c = c.previous_controlnet
controlnet.set_previous_controlnet(c.copy() if c is not None else None)
controlnet = controlnet.previous_controlnet
def region_intersection(region1, region2):
"""
Returns the coordinates of the intersection of two rectangular regions.
:param region1: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the first rectangular region. Expected to have x2 > x1 and y2 > y1.
:param region2: The second rectangular region with the same format as the first.
:return: A tuple of the form (x1, y1, x2, y2) denoting the rectangular intersection.
None if there is no intersection.
"""
x1, y1, x2, y2 = region1
x1_, y1_, x2_, y2_ = region2
x1 = max(x1, x1_)
y1 = max(y1, y1_)
x2 = min(x2, x2_)
y2 = min(y2, y2_)
if x1 >= x2 or y1 >= y2:
return None
return (x1, y1, x2, y2)
def crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "gligen" not in cond_dict:
return
type, model, cond = cond_dict["gligen"]
if type != "position":
from warnings import warn
warn(f"Unknown gligen type {type}")
return
cropped = []
for c in cond:
emb, h, w, y, x = c
# Get the coordinates of the box in the upscaled image
x1 = x * 8
y1 = y * 8
x2 = x1 + w * 8
y2 = y1 + h * 8
gligen_upscaled_box = resize_region((x1, y1, x2, y2), init_size, canvas_size)
# Calculate the intersection of the gligen box and the region
intersection = region_intersection(gligen_upscaled_box, region)
if intersection is None:
continue
x1, y1, x2, y2 = intersection
# Offset the gligen box so that the origin is at the top left of the tile region
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the new position params
h = (y2 - y1) // 8
w = (x2 - x1) // 8
x = x1 // 8
y = y1 // 8
cropped.append((emb, h, w, y, x))
cond_dict["gligen"] = (type, model, cropped)
def crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "area" not in cond_dict:
return
# Resize the area conditioning to the canvas size and confine it to the tile region
h, w, y, x = cond_dict["area"]
w, h, x, y = 8 * w, 8 * h, 8 * x, 8 * y
x1, y1, x2, y2 = resize_region((x, y, x + w, y + h), init_size, canvas_size)
intersection = region_intersection((x1, y1, x2, y2), region)
if intersection is None:
del cond_dict["area"]
del cond_dict["strength"]
return
x1, y1, x2, y2 = intersection
# Offset origin to the top left of the tile
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the params for tile
w, h = (x2 - x1) // 8, (y2 - y1) // 8
x, y = x1 // 8, y1 // 8
cond_dict["area"] = (h, w, y, x)
def crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "mask" not in cond_dict:
return
mask_tensor = cond_dict["mask"] # (B, H, W)
masks = []
for i in range(mask_tensor.shape[0]):
# Convert to PIL image
mask = tensor_to_pil(mask_tensor, i) # W x H
# Resize the mask to the canvas size
mask = mask.resize(canvas_size, Image.Resampling.BICUBIC)
# Crop the mask to the region
mask = mask.crop(region)
# Add padding
mask, _ = resize_and_pad_image(mask, tile_size[0], tile_size[1], fill=True)
# Resize the mask to the tile size
if tile_size != mask.size:
mask = mask.resize(tile_size, Image.Resampling.BICUBIC)
# Convert back to tensor
mask = pil_to_tensor(mask) # (1, H, W, 1)
mask = mask.squeeze(-1) # (1, H, W)
masks.append(mask)
cond_dict["mask"] = torch.cat(masks, dim=0) # (B, H, W)
def crop_cond(cond, region, init_size, canvas_size, tile_size, w_pad=0, h_pad=0):
cropped = []
for emb, x in cond:
cond_dict = x.copy()
n = [emb, cond_dict]
crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
cropped.append(n)
return cropped