Magic-Me / script_examples /basic_api_example.py
Xue-She Wang
init
0d95f10
raw
history blame
2.64 kB
import json
from urllib import request, parse
import random
#This is the ComfyUI api prompt format.
#If you want it for a specific workflow you can "enable dev mode options"
#in the settings of the UI (gear beside the "Queue Size: ") this will enable
#a button on the UI to save workflows in api format.
#keep in mind ComfyUI is pre alpha software so this format will change a bit.
#this is the one for the default workflow
prompt_text = """
{
"3": {
"class_type": "KSampler",
"inputs": {
"cfg": 8,
"denoise": 1,
"latent_image": [
"5",
0
],
"model": [
"4",
0
],
"negative": [
"7",
0
],
"positive": [
"6",
0
],
"sampler_name": "euler",
"scheduler": "normal",
"seed": 8566257,
"steps": 20
}
},
"4": {
"class_type": "CheckpointLoaderSimple",
"inputs": {
"ckpt_name": "v1-5-pruned-emaonly.ckpt"
}
},
"5": {
"class_type": "EmptyLatentImage",
"inputs": {
"batch_size": 1,
"height": 512,
"width": 512
}
},
"6": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "masterpiece best quality girl"
}
},
"7": {
"class_type": "CLIPTextEncode",
"inputs": {
"clip": [
"4",
1
],
"text": "bad hands"
}
},
"8": {
"class_type": "VAEDecode",
"inputs": {
"samples": [
"3",
0
],
"vae": [
"4",
2
]
}
},
"9": {
"class_type": "SaveImage",
"inputs": {
"filename_prefix": "ComfyUI",
"images": [
"8",
0
]
}
}
}
"""
def queue_prompt(prompt):
p = {"prompt": prompt}
data = json.dumps(p).encode('utf-8')
req = request.Request("http://127.0.0.1:8188/prompt", data=data)
request.urlopen(req)
prompt = json.loads(prompt_text)
#set the text prompt for our positive CLIPTextEncode
prompt["6"]["inputs"]["text"] = "masterpiece best quality man"
#set the seed for our KSampler node
prompt["3"]["inputs"]["seed"] = 5
queue_prompt(prompt)