Spaces:
Running
Running
import torch.nn as nn | |
def conv3x3(inplanes, outplanes, stride=1): | |
"""A simple wrapper for 3x3 convolution with padding. | |
Args: | |
inplanes (int): Channel number of inputs. | |
outplanes (int): Channel number of outputs. | |
stride (int): Stride in convolution. Default: 1. | |
""" | |
return nn.Conv2d( | |
inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
class BasicBlock(nn.Module): | |
"""Basic residual block used in the ResNetArcFace architecture. | |
Args: | |
inplanes (int): Channel number of inputs. | |
planes (int): Channel number of outputs. | |
stride (int): Stride in convolution. Default: 1. | |
downsample (nn.Module): The downsample module. Default: None. | |
""" | |
expansion = 1 # output channel expansion ratio | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class IRBlock(nn.Module): | |
"""Improved residual block (IR Block) used in the ResNetArcFace architecture. | |
Args: | |
inplanes (int): Channel number of inputs. | |
planes (int): Channel number of outputs. | |
stride (int): Stride in convolution. Default: 1. | |
downsample (nn.Module): The downsample module. Default: None. | |
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. | |
""" | |
expansion = 1 # output channel expansion ratio | |
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): | |
super(IRBlock, self).__init__() | |
self.bn0 = nn.BatchNorm2d(inplanes) | |
self.conv1 = conv3x3(inplanes, inplanes) | |
self.bn1 = nn.BatchNorm2d(inplanes) | |
self.prelu = nn.PReLU() | |
self.conv2 = conv3x3(inplanes, planes, stride) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
self.use_se = use_se | |
if self.use_se: | |
self.se = SEBlock(planes) | |
def forward(self, x): | |
residual = x | |
out = self.bn0(x) | |
out = self.conv1(out) | |
out = self.bn1(out) | |
out = self.prelu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.use_se: | |
out = self.se(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.prelu(out) | |
return out | |
class Bottleneck(nn.Module): | |
"""Bottleneck block used in the ResNetArcFace architecture. | |
Args: | |
inplanes (int): Channel number of inputs. | |
planes (int): Channel number of outputs. | |
stride (int): Stride in convolution. Default: 1. | |
downsample (nn.Module): The downsample module. Default: None. | |
""" | |
expansion = 4 # output channel expansion ratio | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d( | |
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d( | |
planes, planes * self.expansion, kernel_size=1, bias=False | |
) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class SEBlock(nn.Module): | |
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock. | |
Args: | |
channel (int): Channel number of inputs. | |
reduction (int): Channel reduction ration. Default: 16. | |
""" | |
def __init__(self, channel, reduction=16): | |
super(SEBlock, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d( | |
1 | |
) # pool to 1x1 without spatial information | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction), | |
nn.PReLU(), | |
nn.Linear(channel // reduction, channel), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y | |
class ResNetArcFace(nn.Module): | |
"""ArcFace with ResNet architectures. | |
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. | |
Args: | |
block (str): Block used in the ArcFace architecture. | |
layers (tuple(int)): Block numbers in each layer. | |
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. | |
""" | |
def __init__(self, block, layers, use_se=True): | |
if block == "IRBlock": | |
block = IRBlock | |
self.inplanes = 64 | |
self.use_se = use_se | |
super(ResNetArcFace, self).__init__() | |
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.prelu = nn.PReLU() | |
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.bn4 = nn.BatchNorm2d(512) | |
self.dropout = nn.Dropout() | |
self.fc5 = nn.Linear(512 * 8 * 8, 512) | |
self.bn5 = nn.BatchNorm1d(512) | |
# initialization | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.xavier_normal_(m.weight) | |
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
nn.init.xavier_normal_(m.weight) | |
nn.init.constant_(m.bias, 0) | |
def _make_layer(self, block, planes, num_blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block(self.inplanes, planes, stride, downsample, use_se=self.use_se) | |
) | |
self.inplanes = planes | |
for _ in range(1, num_blocks): | |
layers.append(block(self.inplanes, planes, use_se=self.use_se)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.prelu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.bn4(x) | |
x = self.dropout(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc5(x) | |
x = self.bn5(x) | |
return x | |